Subfactor

Last updated

In the theory of von Neumann algebras, a subfactor of a factor is a subalgebra that is a factor and contains . The theory of subfactors led to the discovery of the Jones polynomial in knot theory.

Contents

Index of a subfactor

Usually is taken to be a factor of type , so that it has a finite trace. In this case every Hilbert space module has a dimension which is a non-negative real number or . The index of a subfactor is defined to be . Here is the representation of obtained from the GNS construction of the trace of .

Jones index theorem

This states that if is a subfactor of (both of type ) then the index is either of the form for , or is at least . All these values occur.

The first few values of are

Basic construction

Suppose that is a subfactor of , and that both are finite von Neumann algebras. The GNS construction produces a Hilbert space acted on by with a cyclic vector . Let be the projection onto the subspace . Then and generate a new von Neumann algebra acting on , containing as a subfactor. The passage from the inclusion of in to the inclusion of in is called the basic construction.

If and are both factors of type and has finite index in then is also of type . Moreover the inclusions have the same index: and .

Jones tower

Suppose that is an inclusion of type factors of finite index. By iterating the basic construction we get a tower of inclusions

where and , and each is generated by the previous algebra and a projection. The union of all these algebras has a tracial state whose restriction to each is the tracial state, and so the closure of the union is another type von Neumann algebra .

The algebra contains a sequence of projections which satisfy the TemperleyLieb relations at parameter . Moreover, the algebra generated by the is a -algebra in which the are self-adjoint, and such that when is in the algebra generated by up to . Whenever these extra conditions are satisfied, the algebra is called a TemperlyLiebJones algebra at parameter . It can be shown to be unique up to -isomorphism. It exists only when takes on those special values for , or the values larger than .

Standard invariant

Suppose that is an inclusion of type factors of finite index. Let the higher relative commutants be and .

The standard invariant of the subfactor is the following grid:

which is a complete invariant in the amenable case. [1] A diagrammatic axiomatization of the standard invariant is given by the notion of planar algebra.

Principal graphs

A subfactor of finite index is said to be irreducible if either of the following equivalent conditions is satisfied:

In this case defines a bimodule as well as its conjugate bimodule . The relative tensor product, described in Jones (1983) and often called Connes fusion after a prior definition for general von Neumann algebras of Alain Connes, can be used to define new bimodules over , , and by decomposing the following tensor products into irreducible components:

The irreducible and bimodules arising in this way form the vertices of the principal graph, a bipartite graph. The directed edges of these graphs describe the way an irreducible bimodule decomposes when tensored with and on the right. The dual principal graph is defined in a similar way using and bimodules.

Since any bimodule corresponds to the commuting actions of two factors, each factor is contained in the commutant of the other and therefore defines a subfactor. When the bimodule is irreducible, its dimension is defined to be the square root of the index of this subfactor. The dimension is extended additively to direct sums of irreducible bimodules. It is multiplicative with respect to Connes fusion.

The subfactor is said to have finite depth if the principal graph and its dual are finite, i.e. if only finitely many irreducible bimodules occur in these decompositions. In this case if and are hyperfinite, Sorin Popa showed that the inclusion is isomorphic to the model

where the factors are obtained from the GNS construction with respect to the canonical trace.

Knot polynomials

The algebra generated by the elements with the relations above is called the Temperley–Lieb algebra. This is a quotient of the group algebra of the braid group, so representations of the Temperley–Lieb algebra give representations of the braid group, which in turn often give invariants for knots.

Related Research Articles

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

<span class="mw-page-title-main">Direct limit</span> Special case of colimit in category theory

In mathematics, a direct limit is a way to construct a object from many objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any category. The way they are put together is specified by a system of homomorphisms between those smaller objects. The direct limit of the objects , where ranges over some directed set , is denoted by .

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

<span class="mw-page-title-main">Semiring</span> Algebraic ring that need not have additive negative elements

In abstract algebra, a semiring is an algebraic structure. It is a generalization of a ring, dropping the requirement that each element must have an additive inverse. At the same time, it is a generalization of bounded distributive lattices.

In mathematics, specifically abstract algebra, an Artinian module is a module that satisfies the descending chain condition on its poset of submodules. They are for modules what Artinian rings are for rings, and a ring is Artinian if and only if it is an Artinian module over itself. Both concepts are named for Emil Artin.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

In mathematics, the spectrum of a C*-algebra or dual of a C*-algebraA, denoted Â, is the set of unitary equivalence classes of irreducible *-representations of A. A *-representation π of A on a Hilbert space H is irreducible if, and only if, there is no closed subspace K different from H and {0} which is invariant under all operators π(x) with xA. We implicitly assume that irreducible representation means non-null irreducible representation, thus excluding trivial (i.e. identically 0) representations on one-dimensional spaces. As explained below, the spectrum  is also naturally a topological space; this is similar to the notion of the spectrum of a ring.

In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals. The theorem was first proven by Emanuel Lasker (1905) for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by Emmy Noether (1921).

In mathematics, planar algebras first appeared in the work of Vaughan Jones on the standard invariant of a II1 subfactor. They also provide an appropriate algebraic framework for many knot invariants (in particular the Jones polynomial), and have been used in describing the properties of Khovanov homology with respect to tangle composition. Any subfactor planar algebra provides a family of unitary representations of Thompson groups. Any finite group (and quantum generalization) can be encoded as a planar algebra.

In model theory and related areas of mathematics, a type is an object that describes how a element or finite collection of elements in a mathematical structure might behave. More precisely, it is a set of first-order formulas in a language L with free variables x1, x2,…, xn that are true of a set of n-tuples of an L-structure . Depending on the context, types can be complete or partial and they may use a fixed set of constants, A, from the structure . The question of which types represent actual elements of leads to the ideas of saturated models and omitting types.

In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra.

In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

In logic, general frames are Kripke frames with an additional structure, which are used to model modal and intermediate logics. The general frame semantics combines the main virtues of Kripke semantics and algebraic semantics: it shares the transparent geometrical insight of the former, and robust completeness of the latter.

In mathematics, Hochschild homology (and cohomology) is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).

This is a glossary of algebraic geometry.

In geometry, a valuation is a finitely additive function from a collection of subsets of a set to an abelian semigroup. For example, Lebesgue measure is a valuation on finite unions of convex bodies of Other examples of valuations on finite unions of convex bodies of are surface area, mean width, and Euler characteristic.

In mathematics, a semiorthogonal decomposition is a way to divide a triangulated category into simpler pieces. One way to produce a semiorthogonal decomposition is from an exceptional collection, a special sequence of objects in a triangulated category. For an algebraic variety X, it has been fruitful to study semiorthogonal decompositions of the bounded derived category of coherent sheaves, .

This is a glossary for the terminology in a mathematical field of functional analysis.

In mathematics and mathematical physics, a factorization algebra is an algebraic structure first introduced by Beilinson and Drinfel'd in an algebro-geometric setting as a reformulation of chiral algebras, and also studied in a more general setting by Costello to study quantum field theory.

References

  1. Popa, Sorin (1994), "Classification of amenable subfactors of type II", Acta Mathematica , 172 (2): 163–255, doi: 10.1007/BF02392646 , MR   1278111