In mathematics, particularly in functional analysis, a projection-valued measure (PVM) is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. Projection-valued measures are formally similar to real-valued measures, except that their values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.
Projection-valued measures are used to express results in spectral theory, such as the important spectral theorem for self-adjoint operators, in which case the PVM is sometimes referred to as the spectral measure. The Borel functional calculus for self-adjoint operators is constructed using integrals with respect to PVMs. In quantum mechanics, PVMs are the mathematical description of projective measurements.[ clarification needed ] They are generalized by positive operator valued measures (POVMs) in the same sense that a mixed state or density matrix generalizes the notion of a pure state.
Let denote a separable complex Hilbert space and a measurable space consisting of a set and a σ-algebra on . A projection-valued measure is a map from to the set of bounded self-adjoint operators on satisfying the following properties: [1]
The second and fourth property show that if and are disjoint, i.e., , the images and are orthogonal to each other.
Let and its orthogonal complement denote the image and kernel, respectively, of . If is a closed subspace of then can be wrtitten as the orthogonal decomposition and is the unique identity operator on satisfying all four properties. [2] [3]
For every and the projection-valued measure can form a complex-valued measure on defined as
which reduces to a real-valued measure when
and a probability measure when is a unit vector.
Example. Suppose is a measure space. Let, for every ,
be the operator of multiplication by the indicator function on L2(X). Then is a projection-valued measure. For example, if , , and there is then the associated complex measure which takes a measurable function and gives the integral
If π is a projection-valued measure on a measurable space (X, M), then the map
extends to a linear map on the vector space of step functions on X. In fact, it is easy to check that this map is a ring homomorphism. This map extends in a canonical way to all bounded complex-valued measurable functions on X, and we have the following.
Theorem. For any bounded -measurable function on , there exists a unique bounded linear operator
such that
for all . Appropriate choice of parameters simplifies the map to
The theorem is also correct for unbounded measurable functions , but then will be an unbounded linear operator on the Hilbert space .
The spectral theorem says that every self-adjoint operator has an associated projection-valued measure defined on the real axis, such that
This allows to define the Borel functional calculus for such operators: if is a measurable function, we set
First we provide a general example of projection-valued measure based on direct integrals. Suppose (X, M, μ) is a measure space and let {Hx}x ∈ X be a μ-measurable family of separable Hilbert spaces. For every E ∈ M, let π(E) be the operator of multiplication by 1E on the Hilbert space
Then π is a projection-valued measure on (X, M).
Suppose π, ρ are projection-valued measures on (X, M) with values in the projections of H, K. π, ρ are unitarily equivalent if and only if there is a unitary operator U:H → K such that
for every E ∈ M.
Theorem. If (X, M) is a standard Borel space, then for every projection-valued measure π on (X, M) taking values in the projections of a separable Hilbert space, there is a Borel measure μ and a μ-measurable family of Hilbert spaces {Hx}x ∈ X, such that π is unitarily equivalent to multiplication by 1E on the Hilbert space
The measure class[ clarification needed ] of μ and the measure equivalence class of the multiplicity function x → dim Hx completely characterize the projection-valued measure up to unitary equivalence.
A projection-valued measure π is homogeneous of multiplicityn if and only if the multiplicity function has constant value n. Clearly,
Theorem. Any projection-valued measure π taking values in the projections of a separable Hilbert space is an orthogonal direct sum of homogeneous projection-valued measures:
where
and
In quantum mechanics, given a projection valued measure of a measurable space X to the space of continuous endomorphisms upon a Hilbert space H,
A common choice for X is the real line, but it may also be
Let E be a measurable subset of the measurable space X and Φ a normalized vector-state in H, so that its Hilbert norm is unitary, ||Φ|| = 1. The probability that the observable takes its value in the subset E, given the system in state Φ, is
where the latter notation is preferred in physics.
We can parse this in two ways.
First, for each fixed E, the projection π(E) is a self-adjoint operator on H whose 1-eigenspace is the states Φ for which the value of the observable always lies in E, and whose 0-eigenspace is the states Φ for which the value of the observable never lies in E.
Second, for each fixed normalized vector state , the association
is a probability measure on X making the values of the observable into a random variable.
A measurement that can be performed by a projection-valued measure π is called a projective measurement.
If X is the real number line, there exists, associated to π, a Hermitian operator A defined on H by
which takes the more readable form
if the support of π is a discrete subset of R.
The above operator A is called the observable associated with the spectral measure.
Any operator so obtained is called an observable, in quantum mechanics.
The idea of a projection-valued measure is generalized by the positive operator-valued measure (POVM), where the need for the orthogonality implied by projection operators is replaced by the idea of a set of operators that are a non-orthogonal partition of unity[ clarification needed ]. This generalization is motivated by applications to quantum information theory.
Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.
In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, to model the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.
In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that converts a function into a form that describes the frequencies present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.
In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.
In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are composed of complex numbers. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.
In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density.
In mathematics as well as physics, a linear operator acting on an inner product space is called positive-semidefinite if, for every , and , where is the domain of . Positive-semidefinite operators are denoted as . The operator is said to be positive-definite, and written , if for all .
In mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint operator on that space according to the rule
In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus, which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function s → s2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential
The concept of system of imprimitivity is used in mathematics, particularly in algebra and analysis, both within the context of the theory of group representations. It was used by George Mackey as the basis for his theory of induced unitary representations of locally compact groups.
In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs.
In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle.
In operator theory, a bounded operator T: X → Y between normed vector spaces X and Y is said to be a contraction if its operator norm ||T || ≤ 1. This notion is a special case of the concept of a contraction mapping, but every bounded operator becomes a contraction after suitable scaling. The analysis of contractions provides insight into the structure of operators, or a family of operators. The theory of contractions on Hilbert space is largely due to Béla Szőkefalvi-Nagy and Ciprian Foias.
In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.
Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.
In mathematics, the Neumann–Poincaré operator or Poincaré–Neumann operator, named after Carl Neumann and Henri Poincaré, is a non-self-adjoint compact operator introduced by Poincaré to solve boundary value problems for the Laplacian on bounded domains in Euclidean space. Within the language of potential theory it reduces the partial differential equation to an integral equation on the boundary to which the theory of Fredholm operators can be applied. The theory is particularly simple in two dimensions—the case treated in detail in this article—where it is related to complex function theory, the conjugate Beurling transform or complex Hilbert transform and the Fredholm eigenvalues of bounded planar domains.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space This article describes the spectral theory of closed normal subalgebras of . A subalgebra of is called normal if it is commutative and closed under the operation: for all , we have and that .