Standard Borel space

Last updated

In mathematics, a standard Borel space is the Borel space associated to a Polish space. Discounting Borel spaces of discrete Polish spaces, there is, up to isomorphism of measurable spaces, only one standard Borel space.

Contents

Formal definition

A measurable space is said to be "standard Borel" if there exists a metric on that makes it a complete separable metric space in such a way that is then the Borel σ-algebra. [1] Standard Borel spaces have several useful properties that do not hold for general measurable spaces.

Properties

Kuratowski's theorem

Theorem. Let be a Polish space, that is, a topological space such that there is a metric on that defines the topology of and that makes a complete separable metric space. Then as a Borel space is Borel isomorphic to one of (1) (2) or (3) a finite discrete space. (This result is reminiscent of Maharam's theorem.)

It follows that a standard Borel space is characterized up to isomorphism by its cardinality, [2] and that any uncountable standard Borel space has the cardinality of the continuum.

Borel isomorphisms on standard Borel spaces are analogous to homeomorphisms on topological spaces: both are bijective and closed under composition, and a homeomorphism and its inverse are both continuous, instead of both being only Borel measurable.

See also

Related Research Articles

<span class="mw-page-title-main">Homeomorphism</span> Isomorphism in topology (mathematics)

In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word homeomorphism comes from the Greek words ὅμοιος (homoios) = similar or same and μορφή (morphē) = shape or form, introduced to mathematics by Henri Poincaré in 1895.

<span class="mw-page-title-main">Isomorphism</span> In mathematics, invertible homomorphism

In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσοςisos "equal", and μορφήmorphe "form" or "shape".

<span class="mw-page-title-main">Measure (mathematics)</span> Generalization of mass, length, area and volume

In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.

In mathematical analysis, a null set is a measurable set that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The pair is called a measurable space.

In mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel.

In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable.

In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians—Sierpiński, Kuratowski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory.

In mathematics and functional analysis a direct integral is a generalization of the concept of direct sum. The theory is most developed for direct integrals of Hilbert spaces and direct integrals of von Neumann algebras. The concept was introduced in 1949 by John von Neumann in one of the papers in the series On Rings of Operators. One of von Neumann's goals in this paper was to reduce the classification of von Neumann algebras on separable Hilbert spaces to the classification of so-called factors. Factors are analogous to full matrix algebras over a field, and von Neumann wanted to prove a continuous analogue of the Artin–Wedderburn theorem classifying semi-simple rings.

In functional analysis, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute.

In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets.

In mathematics, in particular in nonlinear analysis, a Fréchet manifold is a topological space modeled on a Fréchet space in much the same way as a manifold is modeled on a Euclidean space.

In probability theory, random element is a generalization of the concept of random variable to more complicated spaces than the simple real line. The concept was introduced by Maurice Fréchet (1948) who commented that the “development of probability theory and expansion of area of its applications have led to necessity to pass from schemes where (random) outcomes of experiments can be described by number or a finite set of numbers, to schemes where outcomes of experiments represent, for example, vectors, functions, processes, fields, series, transformations, and also sets or collections of sets.”

<span class="mw-page-title-main">Space (mathematics)</span> Mathematical set with some added structure

In mathematics, a space is a set with some added structure.

In mathematics, tightness is a concept in measure theory. The intuitive idea is that a given collection of measures does not "escape to infinity".

In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.

In mathematics—specifically, in functional analysis—a weakly measurable function taking values in a Banach space is a function whose composition with any element of the dual space is a measurable function in the usual (strong) sense. For separable spaces, the notions of weak and strong measurability agree.

A simplicial map is a function between two simplicial complexes, with the property that the images of the vertices of a simplex always span a simplex. Simplicial maps can be used to approximate continuous functions between topological spaces that can be triangulated; this is formalized by the simplicial approximation theorem.

In mathematics, a Borel isomorphism is a measurable bijective function between two measurable standard Borel spaces. By Souslin's theorem in standard Borel spaces, the inverse of any such measurable bijective function is also measurable. Borel isomorphisms are closed under composition and under taking of inverses. The set of Borel isomorphisms from a space to itself clearly forms a group under composition. Borel isomorphisms on standard Borel spaces are analogous to homeomorphisms on topological spaces: both are bijective and closed under composition, and a homeomorphism and its inverse are both continuous, instead of both being only Borel measurable.

References

  1. Mackey, G.W. (1957): Borel structure in groups and their duals. Trans. Am. Math. Soc., 85, 134-165.
  2. Srivastava, S.M. (1991), A Course on Borel Sets, Springer Verlag, ISBN   0-387-98412-7