Analytic set

Last updated

In the mathematical field of descriptive set theory, a subset of a Polish space is an analytic set if it is a continuous image of a Polish space. These sets were first defined by Luzin (1917) and his student Souslin (1917).

Contents

Definition

There are several equivalent definitions of analytic set. The following conditions on a subspace A of a Polish space X are equivalent:

An alternative characterization, in the specific, important, case that is Baire space ωω, is that the analytic sets are precisely the projections of trees on . Similarly, the analytic subsets of Cantor space 2ω are precisely the projections of trees on .

Properties

Analytic subsets of Polish spaces are closed under countable unions and intersections, continuous images, and inverse images. The complement of an analytic set need not be analytic. Suslin proved that if the complement of an analytic set is analytic then the set is Borel. (Conversely any Borel set is analytic and Borel sets are closed under complements.) Luzin proved more generally that any two disjoint analytic sets are separated by a Borel set: in other words there is a Borel set including one and disjoint from the other. This is sometimes called the "Luzin separability principle" (though it was implicit in the proof of Suslin's theorem).

Analytic sets are always Lebesgue measurable (indeed, universally measurable) and have the property of Baire and the perfect set property.

Projective hierarchy

Analytic sets are also called (see projective hierarchy). Note that the bold font in this symbol is not the Wikipedia convention, but rather is used distinctively from its lightface counterpart (see analytical hierarchy). The complements of analytic sets are called coanalytic sets, and the set of coanalytic sets is denoted by . The intersection is the set of Borel sets.

See also

Related Research Articles

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The pair is called a measurable space.

In mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel.

In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable.

<span class="mw-page-title-main">Arithmetical hierarchy</span> Hierarchy of complexity classes for formulas defining sets

In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical.

In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic.

In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians—Sierpiński, Kuratowski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory.

In mathematical logic and descriptive set theory, the analytical hierarchy is an extension of the arithmetical hierarchy. The analytical hierarchy of formulas includes formulas in the language of second-order arithmetic, which can have quantifiers over both the set of natural numbers, , and over functions from to . The analytical hierarchy of sets classifies sets by the formulas that can be used to define them; it is the lightface version of the projective hierarchy.

In the mathematical field of descriptive set theory, a subset of a Polish space is projective if it is for some positive integer . Here is

In set theory, the Baire space is the set of all infinite sequences of natural numbers with a certain topology. This space is commonly used in descriptive set theory, to the extent that its elements are often called "reals". It is denoted NN, ωω, by the symbol or also ωω, not to be confused with the countable ordinal obtained by ordinal exponentiation.

Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name "determinateness".

In measure theory, Carathéodory's extension theorem states that any pre-measure defined on a given ring of subsets R of a given set Ω can be extended to a measure on the σ-algebra generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure.

In descriptive set theory, within mathematics, Wadge degrees are levels of complexity for sets of reals. Sets are compared by continuous reductions. The Wadge hierarchy is the structure of Wadge degrees. These concepts are named after William W. Wadge.

<span class="mw-page-title-main">Mikhail Suslin</span> Russian mathematician

Mikhail Yakovlevich Suslin was a Russian mathematician who made major contributions to the fields of general topology and descriptive set theory.

In the mathematical field of descriptive set theory, a pointclass is a collection of sets of points, where a point is ordinarily understood to be an element of some perfect Polish space. In practice, a pointclass is usually characterized by some sort of definability property; for example, the collection of all open sets in some fixed collection of Polish spaces is a pointclass.

In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.

In mathematics, a standard Borel space is the Borel space associated to a Polish space. Discounting Borel spaces of discrete Polish spaces, there is, up to isomorphism of measurable spaces, only one standard Borel space.

This is a glossary of set theory.

In measure theory, projection maps often appear when working with product spaces: The product sigma-algebra of measurable spaces is defined to be the finest such that the projection mappings will be measurable. Sometimes for some reasons product spaces are equipped with sigma-algebra different than the product sigma-algebra. In these cases the projections need not be measurable at all.

In functional analysis, the Borel graph theorem is generalization of the closed graph theorem that was proven by L. Schwartz.

References