Tree (descriptive set theory)

Last updated

In descriptive set theory, a tree on a set is a collection of finite sequences of elements of such that every prefix of a sequence in the collection also belongs to the collection.

Contents

Definitions

Trees

The collection of all finite sequences of elements of a set is denoted . With this notation, a tree is a nonempty subset of , such that if is a sequence of length in , and if , then the shortened sequence also belongs to . In particular, choosing shows that the empty sequence belongs to every tree.

Branches and bodies

A branch through a tree is an infinite sequence of elements of , each of whose finite prefixes belongs to . The set of all branches through is denoted and called the body of the tree .

A tree that has no branches is called wellfounded ; a tree with at least one branch is illfounded. By Kőnig's lemma, a tree on a finite set with an infinite number of sequences must necessarily be illfounded.

Terminal nodes

A finite sequence that belongs to a tree is called a terminal node if it is not a prefix of a longer sequence in . Equivalently, is terminal if there is no element of such that that . A tree that does not have any terminal nodes is called pruned.

Relation to other types of trees

In graph theory, a rooted tree is a directed graph in which every vertex except for a special root vertex has exactly one outgoing edge, and in which the path formed by following these edges from any vertex eventually leads to the root vertex. If is a tree in the descriptive set theory sense, then it corresponds to a graph with one vertex for each sequence in , and an outgoing edge from each nonempty sequence that connects it to the shorter sequence formed by removing its last element. This graph is a tree in the graph-theoretic sense. The root of the tree is the empty sequence.

In order theory, a different notion of a tree is used: an order-theoretic tree is a partially ordered set with one minimal element in which each element has a well-ordered set of predecessors. Every tree in descriptive set theory is also an order-theoretic tree, using a partial ordering in which two sequences and are ordered by if and only if is a proper prefix of . The empty sequence is the unique minimal element, and each element has a finite and well-ordered set of predecessors (the set of all of its prefixes). An order-theoretic tree may be represented by an isomorphic tree of sequences if and only if each of its elements has finite height (that is, a finite set of predecessors).

Topology

The set of infinite sequences over (denoted as ) may be given the product topology, treating X as a discrete space. In this topology, every closed subset of is of the form for some pruned tree . Namely, let consist of the set of finite prefixes of the infinite sequences in . Conversely, the body of every tree forms a closed set in this topology.

Frequently trees on Cartesian products are considered. In this case, by convention, we consider only the subset of the product space, , containing only sequences whose even elements come from and odd elements come from (e.g., ). Elements in this subspace are identified in the natural way with a subset of the product of two spaces of sequences, (the subset for which the length of the first sequence is equal to or 1 more than the length of the second sequence). In this way we may identify with for over the product space. We may then form the projection of ,

.

See also

Related Research Articles

Monoid Algebraic structure with an associative operation and an identity element

In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element.

In mathematics, specifically ring theory, a principal ideal is an ideal in a ring that is generated by a single element of through multiplication by every element of The term also has another, similar meaning in order theory, where it refers to an (order) ideal in a poset generated by a single element which is to say the set of all elements less than or equal to in

Kőnigs lemma

Kőnig's lemma or Kőnig's infinity lemma is a theorem in graph theory due to the Hungarian mathematician Dénes Kőnig who published it in 1927. It gives a sufficient condition for an infinite graph to have an infinitely long path. The computability aspects of this theorem have been thoroughly investigated by researchers in mathematical logic, especially in computability theory. This theorem also has important roles in constructive mathematics and proof theory.

In functional analysis, a branch of mathematics, a compact operator is a linear operator L from a Banach space X to another Banach space Y, such that the image under L of any bounded subset of X is a relatively compact subset of Y. Such an operator is necessarily a bounded operator, and so continuous.

In mathematics, specifically order theory, a well-quasi-ordering or wqo is a quasi-ordering such that any infinite sequence of elements from contains an increasing pair with .

In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals. The theorem was first proven by Emanuel Lasker (1905) for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by Emmy Noether (1921).

Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists.

In model theory and related areas of mathematics, a type is an object that describes how a element or finite collection of elements in a mathematical structure might behave. More precisely, it is a set of first-order formulas in a language L with free variables x1, x2,…, xn that are true of a sequence of elements of an L-structure . Depending on the context, types can be complete or partial and they may use a fixed set of constants, A, from the structure . The question of which types represent actual elements of leads to the ideas of saturated models and omitting types.

In combinatorics, a branch of mathematics, partition regularity is one notion of largeness for a collection of sets.

The Pólya enumeration theorem, also known as the Redfield–Pólya theorem and Pólya counting, is a theorem in combinatorics that both follows from and ultimately generalizes Burnside's lemma on the number of orbits of a group action on a set. The theorem was first published by J. Howard Redfield in 1927. In 1937 it was independently rediscovered by George Pólya, who then greatly popularized the result by applying it to many counting problems, in particular to the enumeration of chemical compounds.

Constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.

In probability theory and statistical mechanics, the Gaussian free field (GFF) is a Gaussian random field, a central model of random surfaces. Sheffield (2007) gives a mathematical survey of the Gaussian free field.

In recursion theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an important tool in effective descriptive set theory.

In descriptive set theory, the Borel determinacy theorem states that any Gale–Stewart game whose payoff set is a Borel set is determined, meaning that one of the two players will have a winning strategy for the game.

Bass–Serre theory is a part of the mathematical subject of group theory that deals with analyzing the algebraic structure of groups acting by automorphisms on simplicial trees. The theory relates group actions on trees with decomposing groups as iterated applications of the operations of free product with amalgamation and HNN extension, via the notion of the fundamental group of a graph of groups. Bass–Serre theory can be regarded as one-dimensional version of the orbifold theory.

Hilbert space Inner product space that is metrically complete; a Banach space whose norm induces an inner product (The norm satisfies the parallelogram identity)

The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions. A Hilbert space is a vector space equipped with an inner product, an operation that allows defining lengths and angles. Furthermore, Hilbert spaces are complete, which means that there are enough limits in the space to allow the techniques of calculus to be used.

In intuitionistic mathematics, a species is a collection. A spread is a particular kind of species of infinite sequences defined via finite decidable properties. In modern terminology, a spread is an inhabited closed set of sequences. The notion of spread was first proposed by L. E. J. Brouwer (1918B), and was used to define the real numbers. As Brouwer's ideas were developed, the use of spreads became common in intuitionistic mathematics, especially when dealing with choice sequences and the foundations of intuitionistic analysis.

In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space H. This article describes the spectral theory of closed normal subalgebras of

This is a glossary for the terminology in a mathematical field of functional analysis.

References