Analytical hierarchy

Last updated

In mathematical logic and descriptive set theory, the analytical hierarchy is an extension of the arithmetical hierarchy. The analytical hierarchy of formulas includes formulas in the language of second-order arithmetic, which can have quantifiers over both the set of natural numbers, , and over functions from to . The analytical hierarchy of sets classifies sets by the formulas that can be used to define them; it is the lightface version of the projective hierarchy.

Contents

The analytical hierarchy of formulas

The notation indicates the class of formulas in the language of second-order arithmetic with number quantifiers but no set quantifiers. This language does not contain set parameters. The Greek letters here are lightface symbols, indicating the language choice. Each corresponding boldface symbol denotes the corresponding class of formulas in the extended language with a parameter for each real; see projective hierarchy for details.

A formula in the language of second-order arithmetic is defined to be if it is logically equivalent to a formula of the form where is . A formula is defined to be if it is logically equivalent to a formula of the form where is . This inductive definition defines the classes and for every natural number .

Kuratowski and Tarski showed in 1931 that every formula in the language of second-order arithmetic has a prenex normal form, [1] and therefore is or for some . Because meaningless quantifiers can be added to any formula, once a formula is given the classification or for some it will be given the classifications and for all greater than .

The analytical hierarchy of sets of natural numbers

A set of natural numbers is assigned the classification if it is definable by a formula (with one free number variable and no free set variables). The set is assigned the classification if it is definable by a formula. If the set is both and then it is given the additional classification .

The sets are called hyperarithmetical. An alternate classification of these sets by way of iterated computable functionals is provided by the hyperarithmetical theory.

The analytical hierarchy on subsets of Cantor and Baire space

The analytical hierarchy can be defined on any effective Polish space; the definition is particularly simple for Cantor and Baire space because they fit with the language of ordinary second-order arithmetic. Cantor space is the set of all infinite sequences of 0s and 1s; Baire space is the set of all infinite sequences of natural numbers. These are both Polish spaces.

The ordinary axiomatization of second-order arithmetic uses a set-based language in which the set quantifiers can naturally be viewed as quantifying over Cantor space. A subset of Cantor space is assigned the classification if it is definable by a formula (with one free set variable and no free number variables). The set is assigned the classification if it is definable by a formula. If the set is both and then it is given the additional classification .

A subset of Baire space has a corresponding subset of Cantor space under the map that takes each function from to to the characteristic function of its graph. A subset of Baire space is given the classification , , or if and only if the corresponding subset of Cantor space has the same classification. An equivalent definition of the analytical hierarchy on Baire space is given by defining the analytical hierarchy of formulas using a functional version of second-order arithmetic; then the analytical hierarchy on subsets of Cantor space can be defined from the hierarchy on Baire space. This alternate definition gives exactly the same classifications as the first definition.

Because Cantor space is homeomorphic to any finite Cartesian power of itself, and Baire space is homeomorphic to any finite Cartesian power of itself, the analytical hierarchy applies equally well to finite Cartesian powers of one of these spaces. A similar extension is possible for countable powers and to products of powers of Cantor space and powers of Baire space.

Extensions

As is the case with the arithmetical hierarchy, a relativized version of the analytical hierarchy can be defined. The language is extended to add a constant set symbol A. A formula in the extended language is inductively defined to be or using the same inductive definition as above. Given a set , a set is defined to be if it is definable by a formula in which the symbol is interpreted as ; similar definitions for and apply. The sets that are or , for any parameter Y, are classified in the projective hierarchy, and often denoted by boldface Greek letters to indicate the use of parameters. [2]

Examples

Properties

For each we have the following strict containments:

,
,
,
.

A set that is in for some n is said to be analytical. Care is required to distinguish this usage from the term analytic set, which has a different meaning, namely . [5]

Table

Lightface Boldface
Σ0
0
= Π0
0
= Δ0
0
(sometimes the same as Δ0
1
)
Σ0
0
= Π0
0
= Δ0
0
(if defined)
Δ0
1
= recursive
Δ0
1
= clopen
Σ0
1
= recursively enumerable
Π0
1
= co-recursively enumerable
Σ0
1
= G = open
Π0
1
= F = closed
Δ0
2
Δ0
2
Σ0
2
Π0
2
Σ0
2
= Fσ
Π0
2
= Gδ
Δ0
3
Δ0
3
Σ0
3
Π0
3
Σ0
3
= Gδσ
Π0
3
= Fσδ
Σ0
= Π0
= Δ0
= Σ1
0
= Π1
0
= Δ1
0
= arithmetical
Σ0
= Π0
= Δ0
= Σ1
0
= Π1
0
= Δ1
0
= boldface arithmetical
Δ0
α
recursive)
Δ0
α
countable)
Σ0
α
Π0
α
Σ0
α
Π0
α
Σ0
ωCK
1
= Π0
ωCK
1
= Δ0
ωCK
1
= Δ1
1
= hyperarithmetical
Σ0
ω1
= Π0
ω1
= Δ0
ω1
= Δ1
1
= B = Borel
Σ1
1
= lightface analytic
Π1
1
= lightface coanalytic
Σ1
1
= A = analytic
Π1
1
= CA = coanalytic
Δ1
2
Δ1
2
Σ1
2
Π1
2
Σ1
2
= PCA
Π1
2
= CPCA
Δ1
3
Δ1
3
Σ1
3
Π1
3
Σ1
3
= PCPCA
Π1
3
= CPCPCA
Σ1
= Π1
= Δ1
= Σ2
0
= Π2
0
= Δ2
0
= analytical
Σ1
= Π1
= Δ1
= Σ2
0
= Π2
0
= Δ2
0
= P = projective

See also

Related Research Articles

In mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel.

<span class="mw-page-title-main">Arithmetical hierarchy</span> Hierarchy of complexity classes for formulas defining sets

In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical. The arithmetical hierarchy was invented independently by Kleene (1943) and Mostowski (1946).

In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic.

In the mathematical field of descriptive set theory, a subset of a Polish space is an analytic set if it is a continuous image of a Polish space. These sets were first defined by Luzin (1917) and his student Souslin (1917).

In computational complexity theory, the polynomial hierarchy is a hierarchy of complexity classes that generalize the classes NP and co-NP. Each class in the hierarchy is contained within PSPACE. The hierarchy can be defined using oracle machines or alternating Turing machines. It is a resource-bounded counterpart to the arithmetical hierarchy and analytical hierarchy from mathematical logic. The union of the classes in the hierarchy is denoted PH.

In the mathematical field of descriptive set theory, a subset of a Polish space is projective if it is for some positive integer . Here is

In mathematics and theoretical physics, a locally compact quantum group is a relatively new C*-algebraic approach toward quantum groups that generalizes the Kac algebra, compact-quantum-group and Hopf-algebra approaches. Earlier attempts at a unifying definition of quantum groups using, for example, multiplicative unitaries have enjoyed some success but have also encountered several technical problems.

Effective descriptive set theory is the branch of descriptive set theory dealing with sets of reals having lightface definitions; that is, definitions that do not require an arbitrary real parameter. Thus effective descriptive set theory combines descriptive set theory with recursion theory.

In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non-circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of relevance to proof theory still have computable ordinal notations. However, it is not possible to decide effectively whether a given putative ordinal notation is a notation or not ; various more-concrete ways of defining ordinals that definitely have notations are available.

Axiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.

In mathematical logic, the Borel hierarchy is a stratification of the Borel algebra generated by the open subsets of a Polish space; elements of this algebra are called Borel sets. Each Borel set is assigned a unique countable ordinal number called the rank of the Borel set. The Borel hierarchy is of particular interest in descriptive set theory.

In the study of formal theories in mathematical logic, bounded quantifiers are often included in a formal language in addition to the standard quantifiers "∀" and "∃". Bounded quantifiers differ from "∀" and "∃" in that bounded quantifiers restrict the range of the quantified variable. The study of bounded quantifiers is motivated by the fact that determining whether a sentence with only bounded quantifiers is true is often not as difficult as determining whether an arbitrary sentence is true.

In the mathematical field of descriptive set theory, a pointclass is a collection of sets of points, where a point is ordinarily understood to be an element of some perfect Polish space. In practice, a pointclass is usually characterized by some sort of definability property; for example, the collection of all open sets in some fixed collection of Polish spaces is a pointclass.

In computability theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an important tool in effective descriptive set theory.

In set theory and mathematical logic, the Lévy hierarchy, introduced by Azriel Lévy in 1965, is a hierarchy of formulas in the formal language of the Zermelo–Fraenkel set theory, which is typically called just the language of set theory. This is analogous to the arithmetical hierarchy, which provides a similar classification for sentences of the language of arithmetic.

In mathematics, a càdlàg, RCLL, or corlol function is a function defined on the real numbers that is everywhere right-continuous and has left limits everywhere. Càdlàg functions are important in the study of stochastic processes that admit jumps, unlike Brownian motion, which has continuous sample paths. The collection of càdlàg functions on a given domain is known as Skorokhod space.

This is a glossary of set theory.

An ordinary fractal string is a bounded, open subset of the real number line. Such a subset can be written as an at-most-countable union of connected open intervals with associated lengths written in non-increasing order; we also refer to as a fractal string. For example, is a fractal string corresponding to the Cantor set. A fractal string is the analogue of a one-dimensional "fractal drum," and typically the set has a boundary which corresponds to a fractal such as the Cantor set. The heuristic idea of a fractal string is to study a (one-dimensional) fractal using the "space around the fractal." It turns out that the sequence of lengths of the set itself is "intrinsic," in the sense that the fractal string itself contains information about the fractal to which it corresponds.

Bounded arithmetic is a collective name for a family of weak subtheories of Peano arithmetic. Such theories are typically obtained by requiring that quantifiers be bounded in the induction axiom or equivalent postulates. The main purpose is to characterize one or another class of computational complexity in the sense that a function is provably total if and only if it belongs to a given complexity class. Further, theories of bounded arithmetic present uniform counterparts to standard propositional proof systems such as Frege system and are, in particular, useful for constructing polynomial-size proofs in these systems. The characterization of standard complexity classes and correspondence to propositional proof systems allows to interpret theories of bounded arithmetic as formal systems capturing various levels of feasible reasoning.

In first-order arithmetic, the induction principles, bounding principles, and least number principles are three related families of first-order principles, which may or may not hold in nonstandard models of arithmetic. These principles are often used in reverse mathematics to calibrate the axiomatic strength of theorems.

References

  1. P. Odifreddi, Classical Recursion Theory (1989), p.378. North-Holland, 0-444-87295-7
  2. P. D. Welch, "Weak Systems of Determinacy and Arithmetical Quasi-Inductive Definitions" (2010 draft ver., p. 3). Accessed 31 July 2022.
  3. P. Odifreddi, Classical Recursion Theory (1989), p.33. North-Holland, 0-444-87295-7
  4. Quintanilla, M. (2022). "The realm numbers in inner models of set theory". arXiv: 2206.10754 [math.LO].
  5. T. Jech, "The Brave New World of Determinacy" (PDF download). Book review, Bulletin of the American Mathematical Society, vol. 5, number 3, November 1981 (pp.339--349).