This article needs additional citations for verification .(August 2011) |
In mathematical logic, an arithmetical set (or arithmetic set) is a set of natural numbers that can be defined by a formula of first-order Peano arithmetic. The arithmetical sets are classified by the arithmetical hierarchy.
The definition can be extended to an arbitrary countable set A (e.g. the set of n-tuples of integers, the set of rational numbers, the set of formulas in some formal language, etc.) by using Gödel numbers to represent elements of the set and declaring a subset of A to be arithmetical if the set of corresponding Gödel numbers is arithmetical.
A function is called arithmetically definable if the graph of is an arithmetical set.
A real number is called arithmetical if the set of all smaller rational numbers is arithmetical. A complex number is called arithmetical if its real and imaginary parts are both arithmetical.
A set X of natural numbers is arithmetical or arithmetically definable if there is a first-order formula φ(n) in the language of Peano arithmetic such that each number n is in X if and only if φ(n) holds in the standard model of arithmetic. Similarly, a k-ary relation is arithmetical if there is a formula such that holds for all k-tuples of natural numbers.
A function is called arithmetical if its graph is an arithmetical (k+1)-ary relation.
A set A is said to be arithmetical in a set B if A is definable by an arithmetical formula that has B as a set parameter.
Each arithmetical set has an arithmetical formula that says whether particular numbers are in the set. An alternative notion of definability allows for a formula that does not say whether particular numbers are in the set but says whether the set itself satisfies some arithmetical property.
A set Y of natural numbers is implicitly arithmetical or implicitly arithmetically definable if it is definable with an arithmetical formula that is able to use Y as a parameter. That is, if there is a formula in the language of Peano arithmetic with no free number variables and a new set parameter Z and set membership relation such that Y is the unique set Z such that holds.
Every arithmetical set is implicitly arithmetical; if X is arithmetically defined by φ(n) then it is implicitly defined by the formula
Not every implicitly arithmetical set is arithmetical, however. In particular, the truth set of first-order arithmetic is implicitly arithmetical but not arithmetical.
In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.
Presburger arithmetic is the first-order theory of the natural numbers with addition, named in honor of Mojżesz Presburger, who introduced it in 1929. The signature of Presburger arithmetic contains only the addition operation and equality, omitting the multiplication operation entirely. The theory is computably axiomatizable; the axioms include a schema of induction.
In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete.
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation, can decide whether the equation has a solution with all unknowns taking integer values.
In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object .
In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful method for constructing models of any set of sentences that is finitely consistent.
In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical. The arithmetical hierarchy was invented independently by Kleene (1943) and Mostowski (1946).
Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms. It can be conceptualized as sculpting out necessary conditions from sufficient ones.
In mathematics, in set theory, the constructible universe, denoted by , is a particular class of sets that can be described entirely in terms of simpler sets. is the union of the constructible hierarchy. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.
In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.
In set theory, a branch of mathematics, a reflection principle says that it is possible to find sets that, with respect to any given property, resemble the class of all sets. There are several different forms of the reflection principle depending on exactly what is meant by "resemble". Weak forms of the reflection principle are theorems of ZF set theory due to Montague (1961), while stronger forms can be new and very powerful axioms for set theory.
In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics.
In model theory and related areas of mathematics, a type is an object that describes how a element or finite collection of elements in a mathematical structure might behave. More precisely, it is a set of first-order formulas in a language L with free variables x1, x2,..., xn that are true of a set of n-tuples of an L-structure . Depending on the context, types can be complete or partial and they may use a fixed set of constants, A, from the structure . The question of which types represent actual elements of leads to the ideas of saturated models and omitting types.
In mathematical logic, a definable set is an n-ary relation on the domain of a structure whose elements satisfy some formula in the first-order language of that structure. A set can be defined with or without parameters, which are elements of the domain that can be referenced in the formula defining the relation.
In mathematical logic, a non-standard model of arithmetic is a model of first-order Peano arithmetic that contains non-standard numbers. The term standard model of arithmetic refers to the standard natural numbers 0, 1, 2, …. The elements of any model of Peano arithmetic are linearly ordered and possess an initial segment isomorphic to the standard natural numbers. A non-standard model is one that has additional elements outside this initial segment. The construction of such models is due to Thoralf Skolem (1934).
In computability theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an important tool in effective descriptive set theory.
Tennenbaum's theorem, named for Stanley Tennenbaum who presented the theorem in 1959, is a result in mathematical logic that states that no countable nonstandard model of first-order Peano arithmetic (PA) can be recursive.
In computability theory, the T predicate, first studied by mathematician Stephen Cole Kleene, is a particular set of triples of natural numbers that is used to represent computable functions within formal theories of arithmetic. Informally, the T predicate tells whether a particular computer program will halt when run with a particular input, and the corresponding U function is used to obtain the results of the computation if the program does halt. As with the smn theorem, the original notation used by Kleene has become standard terminology for the concept.
In mathematical logic, true arithmetic is the set of all true first-order statements about the arithmetic of natural numbers. This is the theory associated with the standard model of the Peano axioms in the language of the first-order Peano axioms. True arithmetic is occasionally called Skolem arithmetic, though this term usually refers to the different theory of natural numbers with multiplication.
In the mathematical field of computability theory, a PA degree is a Turing degree that computes a complete extension of Peano arithmetic (Jockusch 1987). These degrees are closely related to fixed-point-free (DNR) functions, and have been thoroughly investigated in recursion theory.