Arithmetical set

Last updated

In mathematical logic, an arithmetical set (or arithmetic set) is a set of natural numbers that can be defined by a formula of first-order Peano arithmetic. The arithmetical sets are classified by the arithmetical hierarchy.

Contents

The definition can be extended to an arbitrary countable set A (e.g. the set of n-tuples of integers, the set of rational numbers, the set of formulas in some formal language, etc.) by using Gödel numbers to represent elements of the set and declaring a subset of A to be arithmetical if the set of corresponding Gödel numbers is arithmetical.

A function is called arithmetically definable if the graph of is an arithmetical set.

A real number is called arithmetical if the set of all smaller rational numbers is arithmetical. A complex number is called arithmetical if its real and imaginary parts are both arithmetical.

Formal definition

A set X of natural numbers is arithmetical or arithmetically definable if there is a first-order formula φ(n) in the language of Peano arithmetic such that each number n is in X if and only if φ(n) holds in the standard model of arithmetic. Similarly, a k-ary relation is arithmetical if there is a formula such that holds for all k-tuples of natural numbers.

A function is called arithmetical if its graph is an arithmetical (k+1)-ary relation.

A set A is said to be arithmetical in a set B if A is definable by an arithmetical formula that has B as a set parameter.

Examples

Properties

In fact, such a formula would describe a decision problem for all finite Turing jumps, and hence belongs to 0(ω), which cannot be formalized in first-order arithmetic, as it does not belong to the first-order arithmetical hierarchy.

Implicitly arithmetical sets

Each arithmetical set has an arithmetical formula that says whether particular numbers are in the set. An alternative notion of definability allows for a formula that does not say whether particular numbers are in the set but says whether the set itself satisfies some arithmetical property.

A set Y of natural numbers is implicitly arithmetical or implicitly arithmetically definable if it is definable with an arithmetical formula that is able to use Y as a parameter. That is, if there is a formula in the language of Peano arithmetic with no free number variables and a new set parameter Z and set membership relation such that Y is the unique set Z such that holds.

Every arithmetical set is implicitly arithmetical; if X is arithmetically defined by φ(n) then it is implicitly defined by the formula

.

Not every implicitly arithmetical set is arithmetical, however. In particular, the truth set of first-order arithmetic is implicitly arithmetical but not arithmetical.

See also

Further reading

Related Research Articles

In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements.

<span class="mw-page-title-main">Computable number</span> Real number that can be computed within arbitrary precision

In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers or the computable reals or recursive reals.

<span class="mw-page-title-main">Definable real number</span>

Informally, a definable real number is a real number that can be uniquely specified by its description. The description may be expressed as a construction or as a formula of a formal language. For example, the positive square root of 2, , can be defined as the unique positive solution to the equation , and it can be constructed with a compass and straightedge.

Presburger arithmetic is the first-order theory of the natural numbers with addition, named in honor of Mojżesz Presburger, who introduced it in 1929. The signature of Presburger arithmetic contains only the addition operation and equality, omitting the multiplication operation entirely. The axioms include a schema of induction.

In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops. Primitive recursive functions form a strict subset of those general recursive functions that are also total functions.

In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete.

Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm which, for any given Diophantine equation, can decide whether the equation has a solution with all unknowns taking integer values.

In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. It was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory.

In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful method for constructing models of any set of sentences that is finitely consistent.

<span class="mw-page-title-main">Arithmetical hierarchy</span> Hierarchy of complexity classes for formulas defining sets

In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical.

In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.

In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics.

In mathematical logic, a definable set is an n-ary relation on the domain of a structure whose elements satisfy some formula in the first-order language of that structure. A set can be defined with or without parameters, which are elements of the domain that can be referenced in the formula defining the relation.

In the study of formal theories in mathematical logic, bounded quantifiers are often included in a formal language in addition to the standard quantifiers "∀" and "∃". Bounded quantifiers differ from "∀" and "∃" in that bounded quantifiers restrict the range of the quantified variable. The study of bounded quantifiers is motivated by the fact that determining whether a sentence with only bounded quantifiers is true is often not as difficult as determining whether an arbitrary sentence is true.

In mathematical logic, a non-standard model of arithmetic is a model of (first-order) Peano arithmetic that contains non-standard numbers. The term standard model of arithmetic refers to the standard natural numbers 0, 1, 2, …. The elements of any model of Peano arithmetic are linearly ordered and possess an initial segment isomorphic to the standard natural numbers. A non-standard model is one that has additional elements outside this initial segment. The construction of such models is due to Thoralf Skolem (1934).

In recursion theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an important tool in effective descriptive set theory.

Tennenbaum's theorem, named for Stanley Tennenbaum who presented the theorem in 1959, is a result in mathematical logic that states that no countable nonstandard model of first-order Peano arithmetic (PA) can be recursive.

In computability theory, the T predicate, first studied by mathematician Stephen Cole Kleene, is a particular set of triples of natural numbers that is used to represent computable functions within formal theories of arithmetic. Informally, the T predicate tells whether a particular computer program will halt when run with a particular input, and the corresponding U function is used to obtain the results of the computation if the program does halt. As with the smn theorem, the original notation used by Kleene has become standard terminology for the concept.

In mathematical logic, true arithmetic is the set of all true first-order statements about the arithmetic of natural numbers. This is the theory associated with the standard model of the Peano axioms in the language of the first-order Peano axioms. True arithmetic is occasionally called Skolem arithmetic, though this term usually refers to the different theory of natural numbers with multiplication.

In the mathematical field of computability theory, a PA degree is a Turing degree that computes a complete extension of Peano arithmetic (Jockusch 1987). These degrees are closely related to fixed-point-free (DNR) functions, and have been thoroughly investigated in recursion theory.