In mathematics, an element of a *-algebra is called unitary if it is invertible and its inverse element is the same as its adjoint element. [1]
Let be a *-algebra with unit . An element is called unitary if . In other words, if is invertible and holds, then is unitary. [1]
The set of unitary elements is denoted by or .
A special case from particular importance is the case where is a complete normed *-algebra. This algebra satisfies the C*-identity () and is called a C*-algebra.
Let be a unital C*-algebra, then:
Let be a unital *-algebra and . Then:
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy
In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.
In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.
In mathematics, a self-adjoint operator on a complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.
In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number is said to be in the spectrum of a bounded linear operator if
In mathematics, an element of a *-algebra is called self-adjoint if it is the same as its adjoint.
In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.
In mathematics, in particular functional analysis, the singular values of a compact operator acting between Hilbert spaces and , are the square roots of the eigenvalues of the self-adjoint operator .
In mathematics, particularly in operator theory and C*-algebra theory, the continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra.
In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus, which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function s → s2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential
The spectrum of a linear operator that operates on a Banach space is a fundamental concept of functional analysis. The spectrum consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts:
In mathematics, a π-system on a set is a collection of certain subsets of such that
In measure theory and probability, the monotone class theorem connects monotone classes and 𝜎-algebras. The theorem says that the smallest monotone class containing an algebra of sets is precisely the smallest 𝜎-algebra containing It is used as a type of transfinite induction to prove many other theorems, such as Fubini's theorem.
In mathematics, the support of a measure on a measurable topological space is a precise notion of where in the space the measure "lives". It is defined to be the largest (closed) subset of for which every open neighbourhood of every point of the set has positive measure.
In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.
Hilbert C*-modules are mathematical objects that generalise the notion of Hilbert spaces, in that they endow a linear space with an "inner product" that takes values in a C*-algebra. Hilbert C*-modules were first introduced in the work of Irving Kaplansky in 1953, which developed the theory for commutative, unital algebras. In the 1970s the theory was extended to non-commutative C*-algebras independently by William Lindall Paschke and Marc Rieffel, the latter in a paper that used Hilbert C*-modules to construct a theory of induced representations of C*-algebras. Hilbert C*-modules are crucial to Kasparov's formulation of KK-theory, and provide the right framework to extend the notion of Morita equivalence to C*-algebras. They can be viewed as the generalization of vector bundles to noncommutative C*-algebras and as such play an important role in noncommutative geometry, notably in C*-algebraic quantum group theory, and groupoid C*-algebras.
In mathematics, an element of a *-algebra is called normal if it commutates with its adjoint.
In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space This article describes the spectral theory of closed normal subalgebras of . A subalgebra of is called normal if it is commutative and closed under the operation: for all , we have and that .
This is a glossary for the terminology in a mathematical field of functional analysis.
In mathematics, an element of a *-algebra is called positive if it is the sum of elements of the form .