Unitary element

Last updated

In mathematics, an element of a *-algebra is called unitary if it is invertible and its inverse element is the same as its adjoint element. [1]

Contents

Definition

Let be a *-algebra with unit . An element is called unitary if . In other words, if is invertible and holds, then is unitary. [1]

The set of unitary elements is denoted by or .

A special case from particular importance is the case where is a complete normed *-algebra. This algebra satisfies the C*-identity () and is called a C*-algebra.

Criteria

Examples

Let be a unital C*-algebra, then:

Properties

Let be a unital *-algebra and . Then:

See also

Notes

  1. 1 2 3 4 Dixmier 1977, p. 5.
  2. 1 2 Kadison 1983, p. 271.
  3. 1 2 Dixmier 1977, pp. 4–5.
  4. Blackadar 2006, pp. 57, 63.
  5. Dixmier 1977, p. 9.

Related Research Articles

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number is said to be in the spectrum of a bounded linear operator if

In mathematics, an element of a *-algebra is called self-adjoint if it is the same as its adjoint.

In the field of representation theory in mathematics, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to the projective linear group

In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.

<span class="mw-page-title-main">Singular value</span> Square roots of the eigenvalues of the self-adjoint operator

In mathematics, in particular functional analysis, the singular values of a compact operator acting between Hilbert spaces and , are the square roots of the eigenvalues of the self-adjoint operator .

In mathematics, particularly in operator theory and C*-algebra theory, the continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra.

In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus, which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function ss2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential

In mathematics, a π-system on a set is a collection of certain subsets of such that

In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

In the theory of von Neumann algebras, the Kaplansky density theorem, due to Irving Kaplansky, is a fundamental approximation theorem. The importance and ubiquity of this technical tool led Gert Pedersen to comment in one of his books that,

In mathematics, a commutation theorem for traces explicitly identifies the commutant of a specific von Neumann algebra acting on a Hilbert space in the presence of a trace.

In mathematics, an element of a *-algebra is called normal if it commutates with its adjoint.

In mathematics, symmetric cones, sometimes called domains of positivity, are open convex self-dual cones in Euclidean space which have a transitive group of symmetries, i.e. invertible operators that take the cone onto itself. By the Koecher–Vinberg theorem these correspond to the cone of squares in finite-dimensional real Euclidean Jordan algebras, originally studied and classified by Jordan, von Neumann & Wigner (1934). The tube domain associated with a symmetric cone is a noncompact Hermitian symmetric space of tube type. All the algebraic and geometric structures associated with the symmetric space can be expressed naturally in terms of the Jordan algebra. The other irreducible Hermitian symmetric spaces of noncompact type correspond to Siegel domains of the second kind. These can be described in terms of more complicated structures called Jordan triple systems, which generalize Jordan algebras without identity.

In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the completed injective tensor products. Injective tensor products have applications outside of nuclear spaces. In particular, as described below, up to TVS-isomorphism, many TVSs that are defined for real or complex valued functions, for instance, the Schwartz space or the space of continuously differentiable functions, can be immediately extended to functions valued in a Hausdorff locally convex TVS without any need to extend definitions from real/complex-valued functions to -valued functions.

In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space This article describes the spectral theory of closed normal subalgebras of . A subalgebra of is called normal if it is commutative and closed under the operation: for all , we have and that .

This is a glossary for the terminology in a mathematical field of functional analysis.

In mathematics, an element of a *-algebra is called positive if it is the sum of elements of the form .

References