Universally measurable set

Last updated

In mathematics, a subset of a Polish space is universally measurable if it is measurable with respect to every complete probability measure on that measures all Borel subsets of . In particular, a universally measurable set of reals is necessarily Lebesgue measurable (see § Finiteness condition below).

Contents

Every analytic set is universally measurable. It follows from projective determinacy, which in turn follows from sufficient large cardinals, that every projective set is universally measurable.

Finiteness condition

The condition that the measure be a probability measure; that is, that the measure of itself be 1, is less restrictive than it may appear. For example, Lebesgue measure on the reals is not a probability measure, yet every universally measurable set is Lebesgue measurable. To see this, divide the real line into countably many intervals of length 1; say, N0=[0,1), N1=[1,2), N2=[-1,0), N3=[2,3), N4=[-2,-1), and so on. Now letting μ be Lebesgue measure, define a new measure ν by

Then easily ν is a probability measure on the reals, and a set is ν-measurable if and only if it is Lebesgue measurable. More generally a universally measurable set must be measurable with respect to every sigma-finite measure that measures all Borel sets.

Example contrasting with Lebesgue measurability

Suppose is a subset of Cantor space ; that is, is a set of infinite sequences of zeroes and ones. By putting a binary point before such a sequence, the sequence can be viewed as a real number between 0 and 1 (inclusive), with some unimportant ambiguity. Thus we can think of as a subset of the interval [0,1], and evaluate its Lebesgue measure, if that is defined. That value is sometimes called the coin-flipping measure of , because it is the probability of producing a sequence of heads and tails that is an element of upon flipping a fair coin infinitely many times.

Now it follows from the axiom of choice that there are some such without a well-defined Lebesgue measure (or coin-flipping measure). That is, for such an , the probability that the sequence of flips of a fair coin will wind up in is not well-defined. This is a pathological property of that says that is "very complicated" or "ill-behaved".

From such a set , form a new set by performing the following operation on each sequence in : Intersperse a 0 at every even position in the sequence, moving the other bits to make room. Although is not intuitively any "simpler" or "better-behaved" than , the probability that the sequence of flips of a fair coin will be in is well-defined. Indeed, to be in , the coin must come up tails on every even-numbered flip, which happens with probability zero.

However is not universally measurable. To see that, we can test it against a biased coin that always comes up tails on even-numbered flips, and is fair on odd-numbered flips. For a set of sequences to be universally measurable, an arbitrarily biased coin may be used (even one that can "remember" the sequence of flips that has gone before) and the probability that the sequence of its flips ends up in the set must be well-defined. However, when is tested by the coin we mentioned (the one that always comes up tails on even-numbered flips, and is fair on odd-numbered flips), the probability to hit is not well defined (for the same reason why cannot be tested by the fair coin). Thus, is not universally measurable.

Related Research Articles

In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets. Some authors require additional restrictions on the measure, as described below.

In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean n-spaces. For lower dimensions n = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called n-dimensional volume, n-volume, hypervolume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by λ(A).

<span class="mw-page-title-main">Measure (mathematics)</span> Generalization of mass, length, area and volume

In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.

<span class="mw-page-title-main">Null set</span> Measurable set whose measure is zero

In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length.

<span class="mw-page-title-main">Random variable</span> Variable representing a random phenomenon

A random variable is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' in its mathematical definition refers to neither randomness nor variability but instead is a mathematical function in which

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups.

<span class="mw-page-title-main">Probability space</span> Mathematical concept

In probability theory, a probability space or a probability triple is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die.

In calculus and real analysis, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus—differentiation and integration. This relationship is commonly characterized in the framework of Riemann integration, but with absolute continuity it may be formulated in terms of Lebesgue integration. For real-valued functions on the real line, two interrelated notions appear: absolute continuity of functions and absolute continuity of measures. These two notions are generalized in different directions. The usual derivative of a function is related to the Radon–Nikodym derivative, or density, of a measure. We have the following chains of inclusions for functions over a compact subset of the real line:

In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.

<span class="mw-page-title-main">Mixing (mathematics)</span> Mathematical description of mixing substances

In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: e.g. mixing paint, mixing drinks, industrial mixing.

In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets.

In mathematics, a positive (or signed) measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number (rather than ∞). A set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is a countable union of measurable sets each with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.e. all finite measures are σ-finite but there are (many) σ-finite measures that are not finite.

In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process. Ergodicity is a property of the system; it is a statement that the system cannot be reduced or factored into smaller components. Ergodic theory is the study of systems possessing ergodicity.

In mathematics, the support of a measure on a measurable topological space is a precise notion of where in the space the measure "lives". It is defined to be the largest (closed) subset of for which every open neighbourhood of every point of the set has positive measure.

In mathematics, and specifically in measure theory, equivalence is a notion of two measures being qualitatively similar. Specifically, the two measures agree on which events have measure zero.

In mathematics, the disintegration theorem is a result in measure theory and probability theory. It rigorously defines the idea of a non-trivial "restriction" of a measure to a measure zero subset of the measure space in question. It is related to the existence of conditional probability measures. In a sense, "disintegration" is the opposite process to the construction of a product measure.

<span class="mw-page-title-main">Discrete measure</span>

In mathematics, more precisely in measure theory, a measure on the real line is called a discrete measure if it is concentrated on an at most countable set. The support need not be a discrete set. Geometrically, a discrete measure is a collection of point masses.

In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.

<span class="mw-page-title-main">Lebesgue integration</span> Method of integration

In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the X axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined.

References