Strictly positive measure

Last updated

In mathematics, strict positivity is a concept in measure theory. Intuitively, a strictly positive measure is one that is "nowhere zero", or that is zero "only on points".

Mathematics field of study

Mathematics includes the study of such topics as quantity, structure, space, and change.

Contents

Definition

Let (X, T) be a Hausdorff topological space and let Σ be a σ-algebra on X that contains the topology T (so that every open set is a measurable set, and Σ is at least as fine as the Borel σ-algebra on X). Then a measure μ on (X, Σ) is called strictly positive if every non-empty open subset of X has strictly positive measure.

In topology and related branches of mathematics, a Hausdorff space, separated space or T2 space is a topological space where for any two distinct points there exists a neighbourhood of each which is disjoint from the neighbourhood of the other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters.

In topology and related branches of mathematics, a topological space may be defined as a set of points, along with a set of neighbourhoods for each point, satisfying a set of axioms relating points and neighbourhoods. The definition of a topological space relies only upon set theory and is the most general notion of a mathematical space that allows for the definition of concepts such as continuity, connectedness, and convergence. Other spaces, such as manifolds and metric spaces, are specializations of topological spaces with extra structures or constraints. Being so general, topological spaces are a central unifying notion and appear in virtually every branch of modern mathematics. The branch of mathematics that studies topological spaces in their own right is called point-set topology or general topology.

Open set in topology, set that does not contain any of its boundary points

In mathematics, and more specifically in topology, an open set is an abstract concept generalizing the idea of an open interval in the real line. The simplest example is in metric spaces, where open sets can be defined as those sets which contain a ball around each of their points ; however, an open set, in general, can be very abstract: any collection of sets can be called open, as long as the union of an arbitrary number of open sets is open, the intersection of a finite number of open sets is open, and the space itself is open. These conditions are very loose, and they allow enormous flexibility in the choice of open sets. In the two extremes, every set can be open, or no set can be open but the space itself and the empty set.

In more condensed notation, μ is strictly positive if and only if

In logic and related fields such as mathematics and philosophy, if and only if is a biconditional logical connective between statements.

Examples

In mathematics, the counting measure is an intuitive way to put a measure on any set: the "size" of a subset is taken to be: the number of elements in the subset if the subset has finitely many elements, and ∞ if the subset is infinite.

Dirac measure

In mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element x or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields.

Real line Wikimedia disambiguation page

In mathematics, the real line, or real number line is the line whose points are the real numbers. That is, the real line is the set R of all real numbers, viewed as a geometric space, namely the Euclidean space of dimension one. It can be thought of as a vector space, a metric space, a topological space, a measure space, or a linear continuum.

Properties

Invariant (mathematics) property of mathematical objects that remains unchanged for transformations applied to the objects

In mathematics, an invariant is a property, held by a class of mathematical objects, which remains unchanged when transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used. More generally, an invariant with respect to an equivalence relation is a property that is constant on each equivalence class.

See also

Related Research Articles

In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets. Some authors require additional restrictions on the measure, as described below.

In measure theory, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of n-dimensional Euclidean space. For n = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called n-dimensional volume, n-volume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by λ(A).

In mathematical analysis and in probability theory, a σ-algebra on a set X is a collection Σ of subsets of X that includes X itself, is closed under complement, and is closed under countable unions.

In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups.

In mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel.

In mathematics, the Radon–Nikodym theorem is a result in measure theory. It involves a measurable space on which two σ-finite measures are defined, and . It states that, if , then there is a measurable function , such that for any measurable set ,

In mathematics and functional analysis a direct integral is a generalization of the concept of direct sum. The theory is most developed for direct integrals of Hilbert spaces and direct integrals of von Neumann algebras. The concept was introduced in 1949 by John von Neumann in one of the papers in the series On Rings of Operators. One of von Neumann's goals in this paper was to reduce the classification of von Neumann algebras on separable Hilbert spaces to the classification of so-called factors. Factors are analogous to full matrix algebras over a field, and von Neumann wanted to prove a continuous analogue of the Artin–Wedderburn theorem classifying semi-simple rings.

In functional analysis, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute.

In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets.

In mathematics, tightness is a concept in measure theory. The intuitive idea is that a given collection of measures does not "escape to infinity."

In mathematics, cylinder set measure is a kind of prototype for a measure on an infinite-dimensional vector space. An example is the Gaussian cylinder set measure on Hilbert space.

In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space Rn, closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are named after the German mathematician Carl Friedrich Gauss. One reason why Gaussian measures are so ubiquitous in probability theory is the Central Limit Theorem. Loosely speaking, it states that if a random variable X is obtained by summing a large number N of independent random variables of order 1, then X is of order and its law is approximately Gaussian.

In mathematics, the support of a measure μ on a measurable topological space is a precise notion of where in the space X the measure "lives". It is defined to be the largest (closed) subset of X for which every open neighbourhood of every point of the set has positive measure.

In mathematics, it is a theorem that there is no analogue of Lebesgue measure on an infinite-dimensional Banach space. Other kinds of measures are therefore used on infinite-dimensional spaces: often, the abstract Wiener space construction is used. Alternatively, one may consider Lebesgue measure on finite-dimensional subspaces of the larger space and consider so-called prevalent and shy sets.

In mathematics, a locally finite measure is a measure for which every point of the measure space has a neighbourhood of finite measure.

In mathematics, an inner regular measure is one for which the measure of a set can be approximated from within by compact subsets.

In mathematics, an invariant measure is a measure that is preserved by some function. Ergodic theory is the study of invariant measures in dynamical systems. The Krylov–Bogolyubov theorem proves the existence of invariant measures under certain conditions on the function and space under consideration.

In mathematics, specifically in measure theory, the trivial measure on any measurable space is the measure μ which assigns zero measure to every measurable set: μ(A) = 0 for all A in Σ.

In mathematics, lifting theory was first introduced by John von Neumann in his (1931) pioneering paper, followed later by Dorothy Maharam’s (1958) paper, and by A. Ionescu Tulcea and C. Ionescu Tulcea’s (1961) paper. Lifting theory was motivated to a large extent by its striking applications; for its development up to 1969, see the Ionescu Tulceas' work and the monograph, now a standard reference in the field. Lifting theory continued to develop after 1969, yielding significant new results and applications.