Tangent measure

Last updated

In measure theory, tangent measures are used to study the local behavior of Radon measures, in much the same way as tangent spaces are used to study the local behavior of differentiable manifolds. Tangent measures (introduced by David Preiss [1] in his study of rectifiable sets) are a useful tool in geometric measure theory. For example, they are used in proving Marstrand's theorem and Preiss' theorem.

Contents

Definition

Consider a Radon measure μ defined on an open subset Ω of n-dimensional Euclidean space Rn and let a be an arbitrary point in Ω. We can zoom in on a small open ball of radius r around a, Br(a), via the transformation

which enlarges the ball of radius r about a to a ball of radius 1 centered at 0. With this, we may now zoom in on how μ behaves on Br(a) by looking at the push-forward measure defined by

where

As r gets smaller, this transformation on the measure μ spreads out and enlarges the portion of μ supported around the point a. We can get information about our measure around a by looking at what these measures tend to look like in the limit as r approaches zero.

Definition. A tangent measure of a Radon measure μ at the point a is a second Radon measure ν such that there exist sequences of positive numbers ci > 0 and decreasing radii ri  0 such that
where the limit is taken in the weak- topology, i.e., for any continuous function φ with compact support in Ω,
We denote the set of tangent measures of μ at a by Tan(μ, a).

Existence

The set Tan(μ, a) of tangent measures of a measure μ at a point a in the support of μ is nonempty on mild conditions on μ. By the weak compactness of Radon measures, Tan(μ, a) is nonempty if one of the following conditions hold:

Properties

The collection of tangent measures at a point is closed under two types of scaling. Cones of measures were also defined by Preiss.

At typical points in the support of a measure, the cone of tangent measures is also closed under translations.

Examples

There is an associated notion of the tangent space of a measure. A k-dimensional subspace P of Rn is called the k-dimensional tangent space of μ at a  Ω if after appropriate rescaling μlooks likek-dimensional Hausdorff measure Hk on P. More precisely:

Definition.P is the k-dimensional tangent space of μ at a if there is a θ > 0 such that
where μa,r is the translated and rescaled measure given by
The number θ is called the multiplicity of μ at a, and the tangent space of μ at a is denoted Ta(μ).

Further study of tangent measures and tangent spaces leads to the notion of a varifold. [3]

Related Research Articles

In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.

In mathematics, the total variation identifies several slightly different concepts, related to the structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ ℝ, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation xf(x), for x ∈ [a, b].

Propagator Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

In general relativity, the metric tensor is the fundamental object of study. It may loosely be thought of as a generalization of the gravitational potential of Newtonian gravitation. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.

In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions.

In mathematics, more precisely in measure theory, Lebesgue's decomposition theorem states that for every two σ-finite signed measures and on a measurable space there exist two σ-finite signed measures and such that:

In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process. Ergodicity is a property of the system; it is a statement that the system cannot be reduced or factored into smaller components. Ergodic theory is the study of systems possessing ergodicity.

In mathematics, the Kolmogorov extension theorem is a theorem that guarantees that a suitably "consistent" collection of finite-dimensional distributions will define a stochastic process. It is credited to the English mathematician Percy John Daniell and the Russian mathematician Andrey Nikolaevich Kolmogorov.

In mathematics, the Wasserstein distance or Kantorovich–Rubinstein metric is a distance function defined between probability distributions on a given metric space .

In mathematics, more specifically measure theory, there are various notions of the convergence of measures. For an intuitive general sense of what is meant by convergence in measure, consider a sequence of measures μn on a space, sharing a common collection of measurable sets. Such a sequence might represent an attempt to construct 'better and better' approximations to a desired measure μ that is difficult to obtain directly. The meaning of 'better and better' is subject to all the usual caveats for taking limits; for any error tolerance ε > 0 we require there be N sufficiently large for nN to ensure the 'difference' between μn and μ is smaller than ε. Various notions of convergence specify precisely what the word 'difference' should mean in that description; these notions are not equivalent to one another, and vary in strength.

In mathematics, the disintegration theorem is a result in measure theory and probability theory. It rigorously defines the idea of a non-trivial "restriction" of a measure to a measure zero subset of the measure space in question. It is related to the existence of conditional probability measures. In a sense, "disintegration" is the opposite process to the construction of a product measure.

In mathematics, a Caccioppoli set is a set whose boundary is measurable and has a finite measure. A synonym is set of (locally) finite perimeter. Basically, a set is a Caccioppoli set if its characteristic function is a function of bounded variation.

In probability theory, a random measure is a measure-valued random element. Random measures are for example used in the theory of random processes, where they form many important point processes such as Poisson point processes and Cox processes.

In measure theory, a field of mathematics, the Hausdorff density measures how concentrated a Radon measure is at some point.

In mathematics, the problem of differentiation of integrals is that of determining under what circumstances the mean value integral of a suitable function on a small neighbourhood of a point approximates the value of the function at that point. More formally, given a space X with a measure μ and a metric d, one asks for what functions f : X → R does

In mathematics, lifting theory was first introduced by John von Neumann in a pioneering paper from 1931, in which he answered a question raised by Alfréd Haar. The theory was further developed by Dorothy Maharam (1958) and by Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea (1961). Lifting theory was motivated to a large extent by its striking applications. Its development up to 1969 was described in a monograph of the Ionescu Tulceas. Lifting theory continued to develop since then, yielding new results and applications.

Weyl equation Relativistic wave equation describing massless fermions

In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.

In geometric measure theory an approximate tangent space is a measure theoretic generalization of the concept of a tangent space for a differentiable manifold.

In differential geometry, Santaló's formula describes how to integrate a function on the unit sphere bundle of a Riemannian manifold by first integrating along every geodesic separately and then over the space of all geodesics. It is a standard tool in integral geometry and has applications in isoperimetric and rigidity results. The formula is named after Luis Santaló, who first proved the result in 1952.

References

  1. Preiss, David (1987). "Geometry of measures in : distribution, rectifiability, and densities". Ann. Math. 125 (3): 537–643. doi:10.2307/1971410. hdl: 10338.dmlcz/133417 . JSTOR   1971410.
  2. O'Neil, Toby (1995). "A measure with a large set of tangent measures". Proc. AMS. 123 (7): 2217–2220. doi:10.2307/2160960. JSTOR   2160960.
  3. Röger, Matthias (2004). "Solutions for the Stefan problem with Gibbs-Thomson law by a local minimisation". Interfaces and Free Boundaries. 6 (1): 105–133. doi: 10.4171/IFB/93 . ISSN   1463-9963. MR   2047075.