In mathematics, the **tangent space** of a manifold facilitates the generalization of vectors from affine spaces to general manifolds, since in the latter case one cannot simply subtract two points to obtain a vector that gives the displacement of the one point from the other.

- Informal description
- Formal definitions
- Definition via tangent curves
- Definition via derivations
- Equivalence of the definitions
- Definition via cotangent spaces
- Properties
- Tangent vectors as directional derivatives
- Basis of the tangent space at a point
- The derivative of a map
- See also
- Notes
- References
- External links

In differential geometry, one can attach to every point of a differentiable manifold a *tangent space*—a real vector space that intuitively contains the possible directions in which one can tangentially pass through . The elements of the tangent space at are called the * tangent vectors * at . This is a generalization of the notion of a bound vector in a Euclidean space. The dimension of the tangent space at every point of a connected manifold is the same as that of the manifold itself.

For example, if the given manifold is a -sphere, then one can picture the tangent space at a point as the plane that touches the sphere at that point and is perpendicular to the sphere's radius through the point. More generally, if a given manifold is thought of as an embedded submanifold of Euclidean space, then one can picture a tangent space in this literal fashion. This was the traditional approach toward defining parallel transport. Many authors in differential geometry and general relativity use it.^{ [1] }^{ [2] } More strictly, this defines an affine tangent space, which is distinct from the space of tangent vectors described by modern terminology.

In algebraic geometry, in contrast, there is an intrinsic definition of the *tangent space at a point* of an algebraic variety that gives a vector space with dimension at least that of itself. The points at which the dimension of the tangent space is exactly that of are called *non-singular* points; the others are called *singular* points. For example, a curve that crosses itself does not have a unique tangent line at that point. The singular points of are those where the "test to be a manifold" fails. See Zariski tangent space.

Once the tangent spaces of a manifold have been introduced, one can define vector fields, which are abstractions of the velocity field of particles moving in space. A vector field attaches to every point of the manifold a vector from the tangent space at that point, in a smooth manner. Such a vector field serves to define a generalized ordinary differential equation on a manifold: A solution to such a differential equation is a differentiable curve on the manifold whose derivative at any point is equal to the tangent vector attached to that point by the vector field.

All the tangent spaces of a manifold may be "glued together" to form a new differentiable manifold with twice the dimension of the original manifold, called the * tangent bundle * of the manifold.

The informal description above relies on a manifold's ability to be embedded into an ambient vector space so that the tangent vectors can "stick out" of the manifold into the ambient space. However, it is more convenient to define the notion of a tangent space based solely on the manifold itself.^{ [3] }

There are various equivalent ways of defining the tangent spaces of a manifold. While the definition via the velocity of curves is intuitively the simplest, it is also the most cumbersome to work with. More elegant and abstract approaches are described below.

In the embedded-manifold picture, a tangent vector at a point is thought of as the *velocity* of a curve passing through the point . We can therefore define a tangent vector as an equivalence class of curves passing through while being tangent to each other at .

Suppose that is a differentiable manifold (with smoothness ) and that . Pick a coordinate chart , where is an open subset of containing . Suppose further that two curves with are given such that both are differentiable in the ordinary sense (we call these *differentiable curves initialized at *). Then and are said to be *equivalent* at if and only if the derivatives of and at coincide. This defines an equivalence relation on the set of all differentiable curves initialized at , and equivalence classes of such curves are known as *tangent vectors* of at . The equivalence class of any such curve is denoted by . The *tangent space* of at , denoted by , is then defined as the set of all tangent vectors at ; it does not depend on the choice of coordinate chart .

To define vector-space operations on , we use a chart and define a map by where . Again, one needs to check that this construction does not depend on the particular chart and the curve being used, and in fact it does not.

The map turns out to be bijective and may be used to transfer the vector-space operations on over to , thus turning the latter set into an -dimensional real vector space.

Suppose now that is a manifold. A real-valued function is said to belong to if and only if for every coordinate chart , the map is infinitely differentiable. Note that is a real associative algebra with respect to the pointwise product and sum of functions and scalar multiplication.

Pick a point . A * derivation * at is defined as a linear map that satisfies the Leibniz identity

which is modeled on the product rule of calculus.

(For every identically constant function it follows that ).

If we define addition and scalar multiplication on the set of derivations at by

- and
- ,

then we obtain a real vector space, which we define as the tangent space of at .

Generalizations of this definition are possible, for instance, to complex manifolds and algebraic varieties. However, instead of examining derivations from the full algebra of functions, one must instead work at the level of germs of functions. The reason for this is that the structure sheaf may not be fine for such structures. For example, let be an algebraic variety with structure sheaf . Then the Zariski tangent space at a point is the collection of all -derivations , where is the ground field and is the stalk of at .

For and a differentiable curve such that define (where the derivative is taken in the ordinary sense because is a function from to ). One can ascertain that is a derivation at the point and that equivalent curves yield the same derivation. Thus, for an equivalence class we can define where the curve has been chosen arbitrarily. The map is a vector space isomorphism between the space of the equivalence classes and that of the derivations at the point

Again, we start with a manifold and a point . Consider the ideal of that consists of all smooth functions vanishing at , i.e., . Then and are real vector spaces, and may be defined as the dual space of the quotient space . This latter quotient space is also known as the * cotangent space * of at .

While this definition is the most abstract, it is also the one that is most easily transferable to other settings, for instance, to the varieties considered in algebraic geometry.

If is a derivation at , then for every , which means that gives rise to a linear map . Conversely, if is a linear map, then defines a derivation at . This yields an equivalence between tangent spaces defined via derivations and tangent spaces defined via cotangent spaces.

If is an open subset of , then is a manifold in a natural manner (take coordinate charts to be identity maps on open subsets of ), and the tangent spaces are all naturally identified with .

Another way to think about tangent vectors is as directional derivatives. Given a vector in , one defines the corresponding directional derivative at a point by

This map is naturally a derivation at . Furthermore, every derivation at a point in is of this form. Hence, there is a one-to-one correspondence between vectors (thought of as tangent vectors at a point) and derivations at a point.

As tangent vectors to a general manifold at a point can be defined as derivations at that point, it is natural to think of them as directional derivatives. Specifically, if is a tangent vector to at a point (thought of as a derivation), then define the directional derivative in the direction by

If we think of as the initial velocity of a differentiable curve initialized at , i.e., , then instead, define by

For a manifold , if a chart is given with , then one can define an ordered basis of by

Then for every tangent vector , one has

This formula therefore expresses as a linear combination of the basis tangent vectors defined by the coordinate chart .^{ [4] }

Every smooth (or differentiable) map between smooth (or differentiable) manifolds induces natural linear maps between their corresponding tangent spaces:

If the tangent space is defined via differentiable curves, then this map is defined by

If, instead, the tangent space is defined via derivations, then this map is defined by

The linear map is called variously the *derivative*, *total derivative*, *differential*, or *pushforward* of at . It is frequently expressed using a variety of other notations:

In a sense, the derivative is the best linear approximation to near . Note that when , then the map coincides with the usual notion of the differential of the function . In local coordinates the derivative of is given by the Jacobian.

An important result regarding the derivative map is the following:

**Theorem**. If is a local diffeomorphism at in , then is a linear isomorphism. Conversely, if is continuously differentiable and is an isomorphism, then there is an open neighborhood of such that maps diffeomorphically onto its image.

This is a generalization of the inverse function theorem to maps between manifolds.

- ↑ do Carmo, Manfredo P. (1976).
*Differential Geometry of Curves and Surfaces*. Prentice-Hall.: - ↑ Dirac, Paul A. M. (1996) [1975].
*General Theory of Relativity*. Princeton University Press. ISBN 0-691-01146-X. - ↑ Chris J. Isham (1 January 2002).
*Modern Differential Geometry for Physicists*. Allied Publishers. pp. 70–72. ISBN 978-81-7764-316-9. - ↑ Lerman, Eugene. "An Introduction to Differential Geometry" (PDF). p. 12.

In vector calculus, the **gradient** of a scalar-valued differentiable function *f* of several variables is the vector field whose value at a point is the vector whose components are the partial derivatives of at . That is, for , its gradient is defined at the point in *n-*dimensional space as the vector:

In vector calculus and physics, a **vector field** is an assignment of a vector to each point in a subset of space. For instance, a vector field in the plane can be visualised as a collection of arrows with a given magnitude and direction, each attached to a point in the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout space, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.

In differential geometry, a **Riemannian manifold** or **Riemannian space**(*M*, *g*) is a real, smooth manifold *M* equipped with a positive-definite inner product *g*_{p} on the tangent space *T*_{p}*M* at each point *p*. A common convention is to take *g* to be smooth, which means that for any smooth coordinate chart (*U*, *x*) on *M*, the *n*^{2} functions

In the mathematical field of differential geometry, one definition of a **metric tensor** is a type of function which takes as input a pair of tangent vectors v and w at a point of a surface and produces a real number scalar *g*(*v*, *w*) in a way that generalizes many of the familiar properties of the dot product of vectors in Euclidean space. In the same way as a dot product, metric tensors are used to define the length of and angle between tangent vectors. Through integration, the metric tensor allows one to define and compute the length of curves on the manifold.

**Hamiltonian mechanics** is a mathematically sophisticated formulation of classical mechanics. Historically, it contributed to the formulation of statistical mechanics and quantum mechanics. Hamiltonian mechanics was first formulated by William Rowan Hamilton in 1833, starting from Lagrangian mechanics, a previous reformulation of classical mechanics introduced by Joseph Louis Lagrange in 1788. Like Lagrangian mechanics, Hamiltonian mechanics is equivalent to Newton's laws of motion in the framework of classical mechanics.

In differential geometry, the **tangent bundle** of a differentiable manifold is a manifold which assembles all the tangent vectors in . As a set, it is given by the disjoint union of the tangent spaces of . That is,

In mathematics, especially differential geometry, the **cotangent bundle** of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This may be generalized to categories with more structure than smooth manifolds, such as complex manifolds, or algebraic varieties or schemes. In the smooth case, any Riemannian metric or symplectic form gives an isomorphism between the cotangent bundle and the tangent bundle, but they are not in general isomorphic in other categories.

In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.

In mathematics, the **covariant derivative** is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

**Differential geometry of curves** is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus.

In differential geometry, an **affine connection** is a geometric object on a smooth manifold which *connects* nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Turns out that connections are the easiest way to define differentiation of the sections of vector bundles.

In differential geometry, a **Poisson structure** on a smooth manifold is a Lie bracket on the algebra of smooth functions on , subject to the Leibniz rule

In mathematics and physics, the **Christoffel symbols** are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(*p*, *q*). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

In mathematics, the **jet** is an operation that takes a differentiable function *f* and produces a polynomial, the truncated Taylor polynomial of *f*, at each point of its domain. Although this is the definition of a jet, the theory of jets regards these polynomials as being abstract polynomials rather than polynomial functions.

In differential geometry, **pushforward** is a linear approximation of smooth maps on tangent spaces. Suppose that *φ* : *M* → *N* is a smooth map between smooth manifolds; then the **differential** of *φ, ,* at a point *x* is, in some sense, the best linear approximation of *φ* near *x*. It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of *M* at *x* to the tangent space of *N* at *φ*(*x*), . Hence it can be used to *push* tangent vectors on *M**forward* to tangent vectors on *N*. The differential of a map *φ* is also called, by various authors, the **derivative** or **total derivative** of *φ*.

In mathematics, a **differentiable manifold** is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. Any manifold can be described by a collection of charts, also known as an atlas. One may then apply ideas from calculus while working within the individual charts, since each chart lies within a linear space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In mathematics, a **vector-valued differential form** on a manifold *M* is a differential form on *M* with values in a vector space *V*. More generally, it is a differential form with values in some vector bundle *E* over *M*. Ordinary differential forms can be viewed as **R**-valued differential forms.

In mathematics and theoretical physics, an **invariant differential operator** is a kind of mathematical map from some objects to an object of similar type. These objects are typically functions on , functions on a manifold, vector valued functions, vector fields, or, more generally, sections of a vector bundle.

In the mathematical field of dynamical systems, a **random dynamical system** is a dynamical system in which the equations of motion have an element of randomness to them. Random dynamical systems are characterized by a state space *S*, a set of maps from *S* into itself that can be thought of as the set of all possible equations of motion, and a probability distribution *Q* on the set that represents the random choice of map. Motion in a random dynamical system can be informally thought of as a state evolving according to a succession of maps randomly chosen according to the distribution *Q*.

In the mathematical field of differential topology, the **Lie bracket of vector fields**, also known as the **Jacobi–Lie bracket** or the **commutator of vector fields**, is an operator that assigns to any two vector fields *X* and *Y* on a smooth manifold *M* a third vector field denoted [*X*, *Y*].

- Lee, Jeffrey M. (2009),
*Manifolds and Differential Geometry*, Graduate Studies in Mathematics,**107**, Providence: American Mathematical Society. - Michor, Peter W. (2008),
*Topics in Differential Geometry*, Graduate Studies in Mathematics,**93**, Providence: American Mathematical Society. - Spivak, Michael (1965),
*Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus*, W. A. Benjamin, Inc., ISBN 978-0-8053-9021-6 .

- Tangent Planes at MathWorld

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.