In differential geometry, a quaternionic manifold is a quaternionic analog of a complex manifold. The definition is more complicated and technical than the one for complex manifolds due in part to the noncommutativity of the quaternions and in part to the lack of a suitable calculus of holomorphic functions for quaternions. The most succinct definition uses the language of G-structures on a manifold. Specifically, a quaternionic n-manifold can be defined as a smooth manifold of real dimension 4n equipped with a torsion-free -structure. More naïve, but straightforward, definitions lead to a dearth of examples, and exclude spaces like quaternionic projective space which should clearly be considered as quaternionic manifolds.
Marcel Berger's 1955 paper [1] on the classification of Riemannian holonomy groups first raised the issue of the existence of non-symmetric manifolds with holonomy Sp(n)·Sp(1).Interesting results were proved in the mid-1960s in pioneering work by Edmond Bonan [2] and Kraines [3] who have independently proven that any such manifold admits a parallel 4-form .The long-awaited analog of strong Lefschetz theorem was published [4] in 1982 :
If we regard the quaternionic vector space as a right -module, we can identify the algebra of right -linear maps with the algebra of quaternionic matrices acting on from the left. The invertible right -linear maps then form a subgroup of . We can enhance this group with the group of nonzero quaternions acting by scalar multiplication on from the right. Since this scalar multiplication is -linear (but not-linear) we have another embedding of into . The group is then defined as the product of these subgroups in . Since the intersection of the subgroups and in is their mutual center (the group of scalar matrices with nonzero real coefficients), we have the isomorphism
An almost quaternionic structure on a smooth manifold is just a -structure on . Equivalently, it can be defined as a subbundle of the endomorphism bundle such that each fiber is isomorphic (as a real algebra) to the quaternion algebra . The subbundle is called the almost quaternionic structure bundle. A manifold equipped with an almost quaternionic structure is called an almost quaternionic manifold.
The quaternion structure bundle naturally admits a bundle metric coming from the quaternionic algebra structure, and, with this metric, splits into an orthogonal direct sum of vector bundles where is the trivial line bundle through the identity operator, and is a rank-3 vector bundle corresponding to the purely imaginary quaternions. Neither the bundles or are necessarily trivial.
The unit sphere bundle inside corresponds to the pure unit imaginary quaternions. These are endomorphisms of the tangent spaces that square to −1. The bundle is called the twistor space of the manifold , and its properties are described in more detail below. Local sections of are (locally defined) almost complex structures. There exists a neighborhood of every point in an almost quaternionic manifold with an entire 2-sphere of almost complex structures defined on . One can always find such that
Note, however, that none of these operators may be extendable to all of . That is, the bundle may admit no global sections (e.g. this is the case with quaternionic projective space ). This is in marked contrast to the situation for complex manifolds, which always have a globally defined almost complex structure.
A quaternionic structure on a smooth manifold is an almost quaternionic structure which admits a torsion-free affine connection preserving . Such a connection is never unique, and is not considered to be part of the quaternionic structure. A quaternionic manifold is a smooth manifold together with a quaternionic structure on .
A hypercomplex manifold is a quaternionic manifold with a torsion-free -structure. The reduction of the structure group to is possible if and only if the almost quaternionic structure bundle is trivial (i.e. isomorphic to ). An almost hypercomplex structure corresponds to a global frame of , or, equivalently, triple of almost complex structures , and such that
A hypercomplex structure is an almost hypercomplex structure such that each of , and are integrable.
A quaternionic Kähler manifold is a quaternionic manifold with a torsion-free -structure.
A hyperkähler manifold is a quaternionic manifold with a torsion-free -structure. A hyperkähler manifold is simultaneously a hypercomplex manifold and a quaternionic Kähler manifold.
Given a quaternionic -manifold , the unit 2-sphere subbundle corresponding to the pure unit imaginary quaternions (or almost complex structures) is called the twistor space of . It turns out that, when , there exists a natural complex structure on such that the fibers of the projection are isomorphic to . When , the space admits a natural almost complex structure, but this structure is integrable only if the manifold is self-dual. It turns out that the quaternionic geometry on can be reconstructed entirely from holomorphic data on .
The twistor space theory gives a method of translating problems on quaternionic manifolds into problems on complex manifolds, which are much better understood, and amenable to methods from algebraic geometry. Unfortunately, the twistor space of a quaternionic manifold can be quite complicated, even for simple spaces like .
In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation
In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.
In mathematics, the unitary group of degree n, denoted U(n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL(n, C), and it has as a subgroup the special unitary group, consisting of those unitary matrices with determinant 1.
In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.
In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants. Chern classes were introduced by Shiing-Shen Chern.
In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product of a space with a group . In the same way as with the Cartesian product, a principal bundle is equipped with
In mathematics the spin group, denoted Spin(n), is a Lie group whose underlying manifold is the double cover of the special orthogonal group SO(n) = SO(n, R), such that there exists a short exact sequence of Lie groups (when n ≠ 2)
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.
In differential geometry, the holonomy of a connection on a smooth manifold is the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. Holonomy is a general geometrical consequence of the curvature of the connection. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.
In differential geometry, a hyperkähler manifold is a Riemannian manifold endowed with three integrable almost complex structures that are Kähler with respect to the Riemannian metric and satisfy the quaternionic relations . In particular, it is a hypercomplex manifold. All hyperkähler manifolds are Ricci-flat and are thus Calabi–Yau manifolds.
In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.
In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by Raoul Bott, which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory.
In differential geometry, a G-structure on an n-manifold M, for a given structure group G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M.
In differential geometry, a quaternion-Kähler manifold (or quaternionic Kähler manifold) is a Riemannian 4n-manifold whose Riemannian holonomy group is a subgroup of Sp(n)·Sp(1) for some . Here Sp(n) is the sub-group of consisting of those orthogonal transformations that arise by left-multiplication by some quaternionic matrix, while the group of unit-length quaternions instead acts on quaternionic -space by right scalar multiplication. The Lie group generated by combining these actions is then abstractly isomorphic to .
In mathematics, quaternionic projective space is an extension of the ideas of real projective space and complex projective space, to the case where coordinates lie in the ring of quaternions Quaternionic projective space of dimension n is usually denoted by
In differential geometry, a hypercomplex manifold is a manifold with the tangent bundle equipped with an action by the algebra of quaternions in such a way that the quaternions define integrable almost complex structures.
In mathematics, the classical groups are defined as the special linear groups over the reals , the complex numbers and the quaternions together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Classical Groups.
In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence is a correspondence between Higgs bundles and representations of the fundamental group of a smooth, projective complex algebraic variety, or a compact Kähler manifold.