In mathematics, a diffiety ( /dəˈfaɪəˌtiː/ ) is a geometrical object which plays the same role in the modern theory of partial differential equations that algebraic varieties play for algebraic equations, that is, to encode the space of solutions in a more conceptual way. The term was coined in 1984 by Alexandre Mikhailovich Vinogradov as portmanteau from differential variety. [1]
In algebraic geometry the main objects of study (varieties) model the space of solutions of a system of algebraic equations (i.e. the zero locus of a set of polynomials), together with all their "algebraic consequences". This means that, applying algebraic operations to this set (e.g. adding those polynomials to each other or multiplying them with any other polynomials) will give rise to the same zero locus. In other words, one can actually consider the zero locus of the algebraic ideal generated by the initial set of polynomials.
When dealing with differential equations, apart from applying algebraic operations as above, one has also the option to differentiate the starting equations, obtaining new differential constraints. Therefore, the differential analogue of a variety should be the space of solutions of a system of differential equations, together with all their "differential consequences". Instead of considering the zero locus of an algebraic ideal, one needs therefore to work with a differential ideal.
An elementary diffiety will consist therefore of the infinite prolongationof a differential equation , together with an extra structure provided by a special distribution. Elementary diffieties play the same role in the theory of differential equations as affine algebraic varieties do in the theory of algebraic equations. Accordingly, just like varieties or schemes are composed of irreducible affine varieties or affine schemes, one defines a (non-elementary) diffiety as an object that locally looks like an elementary diffiety.
The formal definition of a diffiety, which relies on the geometric approach to differential equations and their solutions, requires the notions of jets of submanifolds, prolongations, and Cartan distribution, which are recalled below.
Let be an -dimensional smooth manifold. Two -dimensional submanifolds , of are tangent up to order at the point if one can locally describe both submanifolds as zeroes of functions defined in a neighbourhood of , whose derivatives at agree up to order . One can show that being tangent up to order is a coordinate-invariant notion and an equivalence relation. [2] One says also that and have same -th order jet at , and denotes their equivalence class by or . The -jet space of -submanifolds of , denoted by , is defined as the set of all -jets of -dimensional submanifolds of at all points of :As any given jet is locally determined by the derivatives up to order of the functions describing around , one can use such functions to build local coordinates and provide with a natural structure of smooth manifold. [2] | ![]() |
For instance, for one recovers just points in and for one recovers the Grassmannian of -dimensional subspaces of . More generally, all the projections are fibre bundles.
As a particular case, when has a structure of fibred manifold over an -dimensional manifold , one can consider submanifolds of given by the graphs of local sections of . Then the notion of jet of submanifolds boils down to the standard notion of jet of sections, and the jet bundle turns out to be an open and dense subset of . [3]
The -jet prolongation of a submanifold is
The map is a smooth embedding and its image , called the prolongation of the submanifold , is a submanifold of diffeomorphic to .
A space of the form , where is any submanifold of whose prolongation contains the point , is called an -plane (or jet plane, or Cartan plane) at . The Cartan distribution on the jet space is the distribution defined bywhere is the span of all -planes at . [4]
A differential equation of order on the manifold is a submanifold ; a solution is defined to be an -dimensional submanifold such that . When is a fibred manifold over , one recovers the notion of partial differential equations on jet bundles and their solutions, which provide a coordinate-free way to describe the analogous notions of mathematical analysis. While jet bundles are enough to deal with many equations arising in geometry, jet spaces of submanifolds provide a greater generality, used to tackle several PDEs imposed on submanifolds of a given manifold, such as Lagrangian submanifolds and minimal surfaces.
As in the jet bundle case, the Cartan distribution is important in the algebro-geometric approach to differential equations because it allows to encode solutions in purely geometric terms. Indeed, a submanifold is a solution if and only if it is an integral manifold for , i.e. for all .
One can also look at the Cartan distribution of a PDE more intrinsically, definingIn this sense, the pair encodes the information about the solutions of the differential equation .
Given a differential equation of order , its -th prolongation is defined aswhere both and are viewed as embedded submanifolds of , so that their intersection is well-defined. However, such an intersection is not necessarily a manifold again, hence may not be an equation of order . One therefore usually requires to be "nice enough" such that at least its first prolongation is indeed a submanifold of .
Below we will assume that the PDE is formally integrable, i.e. all prolongations are smooth manifolds and all projections are smooth surjective submersions. Note that a suitable version of Cartan–Kuranishi prolongation theorem guarantees that, under minor regularity assumptions, checking the smoothness of a finite number of prolongations is enough. Then the inverse limit of the sequence extends the definition of prolongation to the case when goes to infinity, and the space has the structure of a profinite-dimensional manifold. [5]
An elementary diffiety is a pair where is a -th order differential equation on some manifold, its infinite prolongation and its Cartan distribution. Note that, unlike in the finite case, one can show that the Cartan distribution is -dimensional and involutive. However, due to the infinite-dimensionality of the ambient manifold, the Frobenius theorem does not hold, therefore is not integrable
A diffiety is a triple , consisting of
such that is locally of the form , where is an elementary diffiety and denotes the algebra of smooth functions on . Here locally means a suitable localisation with respect to the Zariski topology corresponding to the algebra .
The dimension of is called dimension of the diffiety and its denoted by , with a capital D (to distinguish it from the dimension of as a manifold).
A morphism between two diffieties and consists of a smooth map whose pushforward preserves the Cartan distribution, i.e. such that, for every point , one has .
Diffieties together with their morphisms define the category of differential equations. [3]
The Vinogradov -spectral sequence (or, for short, Vinogradov sequence) is a spectral sequence associated to a diffiety, which can be used to investigate certain properties of the formal solution space of a differential equation by exploiting its Cartan distribution . [6]
Given a diffiety , consider the algebra of differential forms over
and the corresponding de Rham complex:
Its cohomology groups contain some structural information about the PDE; however, due to the Poincaré Lemma, they all vanish locally. In order to extract much more and even local information, one thus needs to take the Cartan distribution into account and introduce a more sophisticated sequence. To this end, let
be the submodule of differential forms over whose restriction to the distribution vanishes, i.e.
Note that is actually a differential ideal since it is stable w.r.t. to the de Rham differential, i.e. .
Now let be its -th power, i.e. the linear subspace of generated by . Then one obtains a filtration
and since all ideals are stable, this filtration completely determines the following spectral sequence:
The filtration above is finite in each degree, i.e. for every
so that the spectral sequence converges to the de Rham cohomology of the diffiety. One can therefore analyse the terms of the spectral sequence order by order to recover information on the original PDE. For instance: [7]
Many higher-order terms do not have an interpretation yet.
As a particular case, starting with a fibred manifold and its jet bundle instead of the jet space , instead of the -spectral sequence one obtains the slightly less general variational bicomplex. More precisely, any bicomplex determines two spectral sequences: one of the two spectral sequences determined by the variational bicomplex is exactly the Vinogradov -spectral sequence. However, the variational bicomplex was developed independently from the Vinogradov sequence. [8] [9]
Similarly to the terms of the spectral sequence, many terms of the variational bicomplex can be given a physical interpretation in classical field theory: for example, one obtains cohomology classes corresponding to action functionals, conserved currents, gauge charges, etc. [10]
Vinogradov developed a theory, known as secondary calculus, to formalise in cohomological terms the idea of a differential calculus on the space of solutions of a given system of PDEs (i.e. the space of integral manifolds of a given diffiety). [11] [12] [13] [3]
In other words, secondary calculus provides substitutes for functions, vector fields, differential forms, differential operators, etc., on a (generically) very singular space where these objects cannot be defined in the usual (smooth) way on the space of solution. Furthermore, the space of these new objects are naturally endowed with the same algebraic structures of the space of the original objects. [14]
More precisely, consider the horizontal De Rham complex of a diffiety, which can be seen as the leafwise de Rham complex of the involutive distribution or, equivalently, the Lie algebroid complex of the Lie algebroid . Then the complex becomes naturally a commutative DG algebra together with a suitable differential . Then, possibly tensoring with the normal bundle , its cohomology is used to define the following "secondary objects":
Secondary calculus can also be related to the covariant Phase Space, i.e. the solution space of the Euler-Lagrange equations associated to a Lagrangian field theory. [15]
Another way of generalizing ideas from algebraic geometry is differential algebraic geometry.
The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space, that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.
In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle over a smooth manifold is a particular type of connection that is compatible with the action of the group .
In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case.
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.
In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.
In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the phase space from Hamiltonian mechanics.
In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below.
In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions.
In mathematics, the Maurer–Cartan form for a Lie group G is a distinguished differential one-form on G that carries the basic infinitesimal information about the structure of G. It was much used by Élie Cartan as a basic ingredient of his method of moving frames, and bears his name together with that of Ludwig Maurer.
In mathematics, certain systems of partial differential equations are usefully formulated, from the point of view of their underlying geometric and algebraic structure, in terms of a system of differential forms. The idea is to take advantage of the way a differential form restricts to a submanifold, and the fact that this restriction is compatible with the exterior derivative. This is one possible approach to certain over-determined systems, for example, including Lax pairs of integrable systems. A Pfaffian system is specified by 1-forms alone, but the theory includes other types of example of differential system. To elaborate, a Pfaffian system is a set of 1-forms on a smooth manifold.
In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a pseudo-Riemannian manifold that preserves the metric tensor. Killing vector fields are the infinitesimal generators of isometries; that is, flows generated by Killing vector fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.
In differential geometry, a field in mathematics, Darboux's theorem is a theorem providing a normal form for special classes of differential 1-forms, partially generalizing the Frobenius integration theorem. It is named after Jean Gaston Darboux who established it as the solution of the Pfaff problem.
In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).
In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a surface embedded in Euclidean space. It is named after French mathematician Jean Gaston Darboux.
In mathematics, especially in the area of mathematical analysis known as dynamical systems theory, a linear flow on the torus is a flow on the n-dimensional torus which is represented by the following differential equations with respect to the standard angular coordinates
In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form. These concepts were put in their current form with principal bundles only in the 1950s. The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds. This account is intended as an introduction to the theory of connections.
In mathematics, a statistical manifold is a Riemannian manifold, each of whose points is a probability distribution. Statistical manifolds provide a setting for the field of information geometry. The Fisher information metric provides a metric on these manifolds. Following this definition, the log-likelihood function is a differentiable map and the score is an inclusion.
In mathematics and theoretical physics, and especially gauge theory, the deformed Hermitian Yang–Mills (dHYM) equation is a differential equation describing the equations of motion for a D-brane in the B-model of string theory. The equation was derived by Mariño-Minasian-Moore-Strominger in the case of Abelian gauge group, and by Leung–Yau–Zaslow using mirror symmetry from the corresponding equations of motion for D-branes in the A-model of string theory.
In mathematics, mirror symmetry is a conjectural relationship between certain Calabi–Yau manifolds and a constructed "mirror manifold". The conjecture allows one to relate the number of rational curves on a Calabi-Yau manifold to integrals from a family of varieties. In short, this means there is a relation between the number of genus algebraic curves of degree on a Calabi-Yau variety and integrals on a dual variety . These relations were original discovered by Candelas, de la Ossa, Green, and Parkes in a paper studying a generic quintic threefold in as the variety and a construction from the quintic Dwork family giving . Shortly after, Sheldon Katz wrote a summary paper outlining part of their construction and conjectures what the rigorous mathematical interpretation could be.
In mathematics, and especially symplectic geometry, the Thomas–Yau conjecture asks for the existence of a stability condition, similar to those which appear in algebraic geometry, which guarantees the existence of a solution to the special Lagrangian equation inside a Hamiltonian isotopy class of Lagrangian submanifolds. In particular the conjecture contains two difficulties: first it asks what a suitable stability condition might be, and secondly if one can prove stability of an isotopy class if and only if it contains a special Lagrangian representative.
{{cite book}}
: CS1 maint: others (link)