Supermanifold

Last updated

In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below.

Contents

Informal definition

An informal definition is commonly used in physics textbooks and introductory lectures. It defines a supermanifold as a manifold with both bosonic and fermionic coordinates. Locally, it is composed of coordinate charts that make it look like a "flat", "Euclidean" superspace. These local coordinates are often denoted by

where x is the (real-number-valued) spacetime coordinate, and and are Grassmann-valued spatial "directions".

The physical interpretation of the Grassmann-valued coordinates are the subject of debate; explicit experimental searches for supersymmetry have not yielded any positive results. However, the use of Grassmann variables allow for the tremendous simplification of a number of important mathematical results. This includes, among other things a compact definition of functional integrals, the proper treatment of ghosts in BRST quantization, the cancellation of infinities in quantum field theory, Witten's work on the Atiyah-Singer index theorem, and more recent applications to mirror symmetry.

The use of Grassmann-valued coordinates has spawned the field of supermathematics, wherein large portions of geometry can be generalized to super-equivalents, including much of Riemannian geometry and most of the theory of Lie groups and Lie algebras (such as Lie superalgebras, etc.) However, issues remain, including the proper extension of de Rham cohomology to supermanifolds.

Definition

Three different definitions of supermanifolds are in use. One definition is as a sheaf over a ringed space; this is sometimes called the "algebro-geometric approach". [1] This approach has a mathematical elegance, but can be problematic in various calculations and intuitive understanding. A second approach can be called a "concrete approach", [1] as it is capable of simply and naturally generalizing a broad class of concepts from ordinary mathematics. It requires the use of an infinite number of supersymmetric generators in its definition; however, all but a finite number of these generators carry no content, as the concrete approach requires the use of a coarse topology that renders almost all of them equivalent. Surprisingly, these two definitions, one with a finite number of supersymmetric generators, and one with an infinite number of generators, are equivalent. [1] [2]

A third approach describes a supermanifold as a base topos of a superpoint. This approach remains the topic of active research. [3]

Algebro-geometric: as a sheaf

Although supermanifolds are special cases of noncommutative manifolds, their local structure makes them better suited to study with the tools of standard differential geometry and locally ringed spaces.

A supermanifold M of dimension (p,q) is a topological space M with a sheaf of superalgebras, usually denoted OM or C(M), that is locally isomorphic to , where the latter is a Grassmann (Exterior) algebra on q generators.

A supermanifold M of dimension (1,1) is sometimes called a super-Riemann surface.

Historically, this approach is associated with Felix Berezin, Dimitry Leites, and Bertram Kostant.

Concrete: as a smooth manifold

A different definition describes a supermanifold in a fashion that is similar to that of a smooth manifold, except that the model space has been replaced by the model superspace.

To correctly define this, it is necessary to explain what and are. These are given as the even and odd real subspaces of the one-dimensional space of Grassmann numbers, which, by convention, are generated by a countably infinite number of anti-commuting variables: i.e. the one-dimensional space is given by where V is infinite-dimensional. An element z is termed real if ; real elements consisting of only an even number of Grassmann generators form the space of c-numbers, while real elements consisting of only an odd number of Grassmann generators form the space of a-numbers. Note that c-numbers commute, while a-numbers anti-commute. The spaces and are then defined as the p-fold and q-fold Cartesian products of and . [4]

Just as in the case of an ordinary manifold, the supermanifold is then defined as a collection of charts glued together with differentiable transition functions. [4] This definition in terms of charts requires that the transition functions have a smooth structure and a non-vanishing Jacobian. This can only be accomplished if the individual charts use a topology that is considerably coarser than the vector-space topology on the Grassmann algebra. This topology is obtained by projecting down to and then using the natural topology on that. The resulting topology is not Hausdorff, but may be termed "projectively Hausdorff". [4]

That this definition is equivalent to the first one is not at all obvious; however, it is the use of the coarse topology that makes it so, by rendering most of the "points" identical. That is, with the coarse topology is essentially isomorphic [1] [2] to

Properties

Unlike a regular manifold, a supermanifold is not entirely composed of a set of points. Instead, one takes the dual point of view that the structure of a supermanifold M is contained in its sheaf OM of "smooth functions". In the dual point of view, an injective map corresponds to a surjection of sheaves, and a surjective map corresponds to an injection of sheaves.

An alternative approach to the dual point of view is to use the functor of points.

If M is a supermanifold of dimension (p,q), then the underlying space M inherits the structure of a differentiable manifold whose sheaf of smooth functions is , where is the ideal generated by all odd functions. Thus M is called the underlying space, or the body, of M. The quotient map corresponds to an injective map MM; thus M is a submanifold of M.

Examples

Batchelor's theorem

Batchelor's theorem states that every supermanifold is noncanonically isomorphic to a supermanifold of the form ΠE. The word "noncanonically" prevents one from concluding that supermanifolds are simply glorified vector bundles; although the functor Π maps surjectively onto the isomorphism classes of supermanifolds, it is not an equivalence of categories. It was published by Marjorie Batchelor in 1979. [5]

The proof of Batchelor's theorem relies in an essential way on the existence of a partition of unity, so it does not hold for complex or real-analytic supermanifolds.

Odd symplectic structures

Odd symplectic form

In many physical and geometric applications, a supermanifold comes equipped with an Grassmann-odd symplectic structure. All natural geometric objects on a supermanifold are graded. In particular, the bundle of two-forms is equipped with a grading. An odd symplectic form ω on a supermanifold is a closed, odd form, inducing a non-degenerate pairing on TM. Such a supermanifold is called a P-manifold. Its graded dimension is necessarily (n,n), because the odd symplectic form induces a pairing of odd and even variables. There is a version of the Darboux theorem for P-manifolds, which allows one to equip a P-manifold locally with a set of coordinates where the odd symplectic form ω is written as

where are even coordinates, and odd coordinates. (An odd symplectic form should not be confused with a Grassmann-even symplectic form on a supermanifold. In contrast, the Darboux version of an even symplectic form is

where are even coordinates, odd coordinates and are either +1 or −1.)

Antibracket

Given an odd symplectic 2-form ω one may define a Poisson bracket known as the antibracket of any two functions F and G on a supermanifold by

Here and are the right and left derivatives respectively and z are the coordinates of the supermanifold. Equipped with this bracket, the algebra of functions on a supermanifold becomes an antibracket algebra.

A coordinate transformation that preserves the antibracket is called a P-transformation. If the Berezinian of a P-transformation is equal to one then it is called an SP-transformation.

P and SP-manifolds

Using the Darboux theorem for odd symplectic forms one can show that P-manifolds are constructed from open sets of superspaces glued together by P-transformations. A manifold is said to be an SP-manifold if these transition functions can be chosen to be SP-transformations. Equivalently one may define an SP-manifold as a supermanifold with a nondegenerate odd 2-form ω and a density function ρ such that on each coordinate patch there exist Darboux coordinates in which ρ is identically equal to one.

Laplacian

One may define a Laplacian operator Δ on an SP-manifold as the operator which takes a function H to one half of the divergence of the corresponding Hamiltonian vector field. Explicitly one defines

In Darboux coordinates this definition reduces to

where xa and θa are even and odd coordinates such that

The Laplacian is odd and nilpotent

One may define the cohomology of functions H with respect to the Laplacian. In Geometry of Batalin-Vilkovisky quantization, Albert Schwarz has proven that the integral of a function H over a Lagrangian submanifold L depends only on the cohomology class of H and on the homology class of the body of L in the body of the ambient supermanifold.

SUSY

A pre-SUSY-structure on a supermanifold of dimension (n,m) is an odd m-dimensional distribution . With such a distribution one associates its Frobenius tensor (since P is odd, the skew-symmetric Frobenius tensor is a symmetric operation). If this tensor is non-degenerate, e.g. lies in an open orbit of , M is called a SUSY-manifold. SUSY-structure in dimension (1, k) is the same as odd contact structure.

See also

Related Research Articles

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

<span class="mw-page-title-main">Hamiltonian mechanics</span> Formulation of classical mechanics using momenta

In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

<span class="mw-page-title-main">Poisson bracket</span> Operation in Hamiltonian mechanics

In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.

<span class="mw-page-title-main">Cobordism</span> Concept in mathematics

In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary of a manifold. Two manifolds of the same dimension are cobordant if their disjoint union is the boundary of a compact manifold one dimension higher.

Superspace is the coordinate space of a theory exhibiting supersymmetry. In such a formulation, along with ordinary space dimensions x, y, z, ..., there are also "anticommuting" dimensions whose coordinates are labeled in Grassmann numbers rather than real numbers. The ordinary space dimensions correspond to bosonic degrees of freedom, the anticommuting dimensions to fermionic degrees of freedom.

<span class="mw-page-title-main">Contact geometry</span> Branch of geometry

In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem.

In mathematics, an almost complex manifold is a smooth manifold equipped with a smooth linear complex structure on each tangent space. Every complex manifold is an almost complex manifold, but there are almost complex manifolds that are not complex manifolds. Almost complex structures have important applications in symplectic geometry.

In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the phase space from Hamiltonian mechanics.

In differential geometry, a field in mathematics, Darboux's theorem is a theorem providing a normal form for special classes of differential 1-forms, partially generalizing the Frobenius integration theorem. It is named after Jean Gaston Darboux who established it as the solution of the Pfaff problem.

In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton, a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics. The integral curves of a Hamiltonian vector field represent solutions to the equations of motion in the Hamiltonian form. The diffeomorphisms of a symplectic manifold arising from the flow of a Hamiltonian vector field are known as canonical transformations in physics and (Hamiltonian) symplectomorphisms in mathematics.

In mathematics, the Moyal product is an example of a phase-space star product. It is an associative, non-commutative product, , on the functions on , equipped with its Poisson bracket. It is a special case of the -product of the "algebra of symbols" of a universal enveloping algebra.

<span class="mw-page-title-main">Differentiable manifold</span> Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding.

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

In the field of mathematics known as differential geometry, a generalized complex structure is a property of a differential manifold that includes as special cases a complex structure and a symplectic structure. Generalized complex structures were introduced by Nigel Hitchin in 2002 and further developed by his students Marco Gualtieri and Gil Cavalcanti.

The non-squeezing theorem, also called Gromov's non-squeezing theorem, is one of the most important theorems in symplectic geometry. It was first proven in 1985 by Mikhail Gromov. The theorem states that one cannot embed a ball into a cylinder via a symplectic map unless the radius of the ball is less than or equal to the radius of the cylinder. The theorem is important because formerly very little was known about the geometry behind symplectic maps. One easy consequence of a transformation being symplectic is that it preserves volume. One can easily embed a ball of any radius into a cylinder of any other radius by a volume-preserving transformation: just picture squeezing the ball into the cylinder. Thus, the non-squeezing theorem tells us that, although symplectic transformations are volume-preserving, it is much more restrictive for a transformation to be symplectic than it is to be volume-preserving.

In algebraic geometry, graded manifolds are extensions of the concept of manifolds based on ideas coming from supersymmetry and supercommutative algebra. Both graded manifolds and supermanifolds are phrased in terms of sheaves of graded commutative algebras. However, graded manifolds are characterized by sheaves on smooth manifolds, while supermanifolds are constructed by gluing of sheaves of supervector spaces.

In geometry of normed spaces, the Holmes–Thompson volume is a notion of volume that allows to compare sets contained in different normed spaces. It was introduced by Raymond D. Holmes and Anthony Charles Thompson.

References

  1. 1 2 3 4 Alice Rogers, Supermanifolds: Theory and Applications, World Scientific, (2007) ISBN   978-981-3203-21-1 (See Chapter 1)
  2. 1 2 Rogers, Op. Cit.(See Chapter 8.)
  3. supermanifold at the nLab
  4. 1 2 3 Bryce DeWitt, Supermanifolds, (1984) Cambridge University Press ISBN   0521 42377 5 (See chapter 2.)
  5. Batchelor, Marjorie (1979), "The structure of supermanifolds", Transactions of the American Mathematical Society, 253: 329–338, doi: 10.2307/1998201 , JSTOR   1998201, MR   0536951