6D (2,0) superconformal field theory

Last updated

In theoretical physics, the six-dimensional (2,0)-superconformal field theory is a quantum field theory whose existence is predicted by arguments in string theory. It is still poorly understood because there is no known description of the theory in terms of an action functional. Despite the inherent difficulty in studying this theory, it is considered to be an interesting object for a variety of reasons, both physical and mathematical. [1]

Contents

Applications

The (2,0)-theory has proven to be important for studying the general properties of quantum field theories. Indeed, this theory subsumes a large number of mathematically interesting effective quantum field theories and points to new dualities relating these theories. For example, Luis Alday, Davide Gaiotto, and Yuji Tachikawa showed that by compactifying this theory on a surface, one obtains a four-dimensional quantum field theory, and there is a duality known as the AGT correspondence which relates the physics of this theory to certain physical concepts associated with the surface itself. [2] More recently, theorists have extended these ideas to study the theories obtained by compactifying down to three dimensions. [3]

In addition to its applications in quantum field theory, the (2,0)-theory has spawned a number of important results in pure mathematics. For example, the existence of the (2,0)-theory was used by Witten to give a "physical" explanation for a conjectural relationship in mathematics called the geometric Langlands correspondence. [4] In subsequent work, Witten showed that the (2,0)-theory could be used to understand a concept in mathematics called Khovanov homology. [5] Developed by Mikhail Khovanov around 2000, Khovanov homology provides a tool in knot theory, the branch of mathematics that studies and classifies the different shapes of knots. [6] Another application of the (2,0)-theory in mathematics is the work of Davide Gaiotto, Greg Moore, and Andrew Neitzke, which used physical ideas to derive new results in hyperkähler geometry. [7]

See also

Notes

  1. Moore 2012
  2. Alday, Gaiotto, and Tachikawa 2010
  3. Dimofte, Gaiotto, Gukov 2010
  4. Witten 2009
  5. Witten 2012
  6. Khovanov 2000
  7. Gaiotto, Moore, Neitzke 2013

Related Research Articles

M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witten's announcement initiated a flurry of research activity known as the second superstring revolution. Prior to Witten's announcement, string theorists had identified five versions of superstring theory. Although these theories initially appeared to be very different, work by many physicists showed that the theories were related in intricate and nontrivial ways. Physicists found that apparently distinct theories could be unified by mathematical transformations called S-duality and T-duality. Witten's conjecture was based in part on the existence of these dualities and in part on the relationship of the string theories to a field theory called eleven-dimensional supergravity.

Edward Witten American theoretical physicist

Edward Witten is an American mathematical and theoretical physicist. He is a Professor Emeritus in the School of Natural Sciences at the Institute for Advanced Study in Princeton. Witten is a researcher in string theory, quantum gravity, supersymmetric quantum field theories, and other areas of mathematical physics. Witten's work has also significantly impacted pure mathematics. In 1990, he became the first physicist to be awarded a Fields Medal by the International Mathematical Union, for his 1981 proof of the positive energy theorem in general relativity. He is considered the practical founder of M-theory.

In theoretical physics, twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a branch of theoretical and mathematical physics. Penrose proposed that twistor space should be the basic arena for physics from which space-time itself should emerge. It leads to a powerful set of mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory and in physics to general relativity and quantum field theory, in particular to scattering amplitudes.

The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type developed by Edward Witten. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who introduced the Chern–Simons 3-form. In the Chern–Simons theory, the action is proportional to the integral of the Chern–Simons 3-form.

In theoretical physics, S-duality is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theoretical physics because it relates a theory in which calculations are difficult to a theory in which they are easier.

In theoretical physics, the BFSS matrix model or matrix theory is a quantum mechanical model proposed by Tom Banks, Willy Fischler, Stephen Shenker, and Leonard Susskind in 1997.

In gauge theory and mathematical physics, a topological quantum field theory is a quantum field theory which computes topological invariants.

In theoretical physics, the anti-de Sitter/conformal field theory correspondence, sometimes called Maldacena duality or gauge/gravity duality, is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) which are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories (CFT) which are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles.

In algebraic geometry and theoretical physics, mirror symmetry is a relationship between geometric objects called Calabi–Yau manifolds. The term refers to a situation where two Calabi–Yau manifolds look very different geometrically but are nevertheless equivalent when employed as extra dimensions of string theory.

Nathan Seiberg

Nathan "Nati" Seiberg is an Israeli American theoretical physicist who works on quantum field theory and string theory. He is currently a professor at the Institute for Advanced Study in Princeton, New Jersey, United States.

In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group M and modular functions, in particular, the j function. The term was coined by John Conway and Simon P. Norton in 1979.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

Homological mirror symmetry is a mathematical conjecture made by Maxim Kontsevich. It seeks a systematic mathematical explanation for a phenomenon called mirror symmetry first observed by physicists studying string theory.

In mathematics, Khovanov homology is an oriented link invariant that arises as the homology of a chain complex. It may be regarded as a categorification of the Jones polynomial.

The Hitchin functional is a mathematical concept with applications in string theory that was introduced by the British mathematician Nigel Hitchin. Hitchin (2000) and Hitchin (2001) are the original articles of the Hitchin functional.

In mathematics and supersymmetric gauge theory, spectral networks are "networks of trajectories on Riemann surfaces obeying certain local rules. Spectral networks arise naturally in four-dimensional N = 2 theories coupled to surface defects, particularly the theories of class S."

In theoretical physics, the AGT correspondence is a relationship between Liouville field theory on a punctured Riemann surface and a certain four-dimensional SU(2) gauge theory obtained by compactifying the 6D (2,0) superconformal field theory on the surface. The relationship was discovered by Luis Alday, Davide Gaiotto, and Yuji Tachikawa in 2009. It was soon extended to a more general relationship between AN-1 Toda field theory and SU(N) gauge theories. The idea of the AGT correspondence has also been extended to describe relationships between three-dimensional theories.

Mina Aganagić Mathematical physicist

Mina Aganagić is a mathematical physicist who works as a professor in the Center for Theoretical Physics, the Department of Mathematics, the Department of Physics at the University of California, Berkeley.

Davide Silvano Achille Gaiotto is an Italian mathematical physicist who deals with quantum field theories and string theory. He received the Gribov Medal in 2011 and the New Horizons in Physics Prize in 2013.

Supersymmetric localization is a method to exactly compute correlation functions of supersymmetric operators in certain supersymmetric quantum field theories such as the partition function, supersymmetric Wilson loops, etc. The method can be seen as an extension of the Berline–Vergne– Atiyah– Bott formula for equivariant integration to path integrals of certain supersymmetric quantum field theories. Although the method cannot be applied to general local operators, it does provide the full nonperturbative answer for the restricted class of supersymmetric operators. It is a powerful tool which is currently extensively used in the study of supersymmetric quantum field theory. The method, built on the previous works by E.Witten, in its modern form involves subjecting the theory to a nontrivial supergravity background, such that the fermionic symmetry preserved by the latter can be used to perform the localization computation, as in.

References