Khovanov homology

Last updated

In mathematics, Khovanov homology is an oriented link invariant that arises as the cohomology of a cochain complex. It may be regarded as a categorification of the Jones polynomial.

Contents

It was developed in the late 1990s by Mikhail Khovanov.

Overview

To any link diagram D representing a link L, we assign the Khovanov bracket[D], a cochain complex of graded vector spaces. This is the analogue of the Kauffman bracket in the construction of the Jones polynomial. Next, we normalise [D] by a series of degree shifts (in the graded vector spaces) and height shifts (in the cochain complex) to obtain a new cochain complex C(D). The cohomology of this cochain complex turns out to be an invariant of L, and its graded Euler characteristic is the Jones polynomial of L.

Definition

This definition follows the formalism given in Dror Bar-Natan's 2002 paper.

Let {l} denote the degree shift operation on graded vector spacesthat is, the homogeneous component in dimension m is shifted up to dimension m + l.

Similarly, let [s] denote the height shift operation on cochain complexes—that is, the rth vector space or module in the complex is shifted along to the (r + s)th place, with all the differential maps being shifted accordingly.

Let V be a graded vector space with one generator q of degree 1, and one generator q−1 of degree −1.

Now take an arbitrary diagram D representing a link L. The axioms for the Khovanov bracket are as follows:

  1. [ø] = 0 → Z → 0, where ø denotes the empty link.
  2. [O D] = V[D], where O denotes an unlinked trivial component.
  3. [D] = F(0 → [D0][D1]{1} → 0)

In the third of these, F denotes the `flattening' operation, where a single complex is formed from a double complex by taking direct sums along the diagonals. Also, D0 denotes the `0-smoothing' of a chosen crossing in D, and D1 denotes the `1-smoothing', analogously to the skein relation for the Kauffman bracket.

Next, we construct the `normalised' complex C(D) = [D][−n]{n+  2n}, where n denotes the number of left-handed crossings in the chosen diagram for D, and n+ the number of right-handed crossings.

The Khovanov homology of L is then defined as the cohomology H(L) of this complex C(D). It turns out that the Khovanov homology is indeed an invariant of L, and does not depend on the choice of diagram. The graded Euler characteristic of H(L) turns out to be the Jones polynomial of L. However, H(L) has been shown to contain more information about L than the Jones polynomial, but the exact details are not yet fully understood.

In 2006 Dror Bar-Natan developed a computer program to calculate the Khovanov homology (or category) for any knot. [1]

One of the most interesting aspects of Khovanov's homology is that its exact sequences are formally similar to those arising in the Floer homology of 3-manifolds. Moreover, it has been used to produce another proof of a result first demonstrated using gauge theory and its cousins: Jacob Rasmussen's new proof of a theorem of Peter Kronheimer and Tomasz Mrowka, formerly known as the Milnor conjecture (see below). There is a spectral sequence relating Khovanov homology with the knot Floer homology of Peter Ozsváth and Zoltán Szabó (Dowlin 2018). [2] This spectral sequence settled an earlier conjecture on the relationship between the two theories (Dunfield et al. 2005). Another spectral sequence (Ozsváth-Szabó 2005) relates a variant of Khovanov homology with the Heegaard Floer homology of the branched double cover along a knot. A third (Bloom 2009) converges to a variant of the monopole Floer homology of the branched double cover. In 2010 Kronheimer and Mrowka [3] exhibited a spectral sequence abutting to their instanton knot Floer homology group and used this to show that Khovanov Homology (like the instanton knot Floer homology) detects the unknot.

Khovanov homology is related to the representation theory of the Lie algebra . Mikhail Khovanov and Lev Rozansky have since defined homology theories associated to for all . In 2003, Catharina Stroppel extended Khovanov homology to an invariant of tangles (a categorified version of Reshetikhin-Turaev invariants) which also generalizes to for all . Paul Seidel and Ivan Smith have constructed a singly graded knot homology theory using Lagrangian intersection Floer homology, which they conjecture to be isomorphic to a singly graded version of Khovanov homology. Ciprian Manolescu has since simplified their construction and shown how to recover the Jones polynomial from the cochain complex underlying his version of the Seidel-Smith invariant.

At International Congress of Mathematicians in 2006 Mikhail Khovanov provided the following explanation for the relation to knot polynomials from the view point of Khovanov homology. The skein relation for three links and is described as

Substituting leads to a link polynomial invariant , normalized so that

For the polynomial can be interpreted via the representation theory of quantum group and via that of the quantum Lie superalgebra .

Applications

The first application of Khovanov homology was provided by Jacob Rasmussen, who defined the s-invariant using Khovanov homology. This integer valued invariant of a knot gives a bound on the slice genus, and is sufficient to prove the Milnor conjecture.

In 2010, Kronheimer and Mrowka proved that the Khovanov homology detects the unknot. The categorified theory has more information than the non-categorified theory. Although the Khovanov homology detects the unknot, it is not yet known if the Jones polynomial does.

Notes

  1. New Scientist 18 Oct 2008
  2. Dowlin, Nathan (2018-11-19). "A spectral sequence from Khovanov homology to knot Floer homology". arXiv: 1811.07848 [math.GT].
  3. Kronheimer, Peter B.; Mrowka, Tomasz (2011). "Khovanov homology is an unknot-detector". Publ. Math. Inst. Hautes Études Sci. 113: 97–208. arXiv: 1005.4346 . doi:10.1007/s10240-010-0030-y. S2CID   119586228.

Related Research Articles

<span class="mw-page-title-main">Unknot</span> Loop seen as a trivial knot

In the mathematical theory of knots, the unknot, not knot, or trivial knot, is the least knotted of all knots. Intuitively, the unknot is a closed loop of rope without a knot tied into it, unknotted. To a knot theorist, an unknot is any embedded topological circle in the 3-sphere that is ambient isotopic to a geometrically round circle, the standard unknot.

<span class="mw-page-title-main">Knot theory</span> Study of mathematical knots

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself.

<span class="mw-page-title-main">Knot invariant</span> Function of a knot that takes the same value for equivalent knots

In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some invariants are indeed numbers (algebraic), but invariants can range from the simple, such as a yes/no answer, to those as complex as a homology theory (for example, "a knot invariant is a rule that assigns to any knot K a quantity φ(K) such that if K and K' are equivalent then φ(K) = φ(K')."). Research on invariants is not only motivated by the basic problem of distinguishing one knot from another but also to understand fundamental properties of knots and their relations to other branches of mathematics. Knot invariants are thus used in knot classification, both in "enumeration" and "duplication removal".

A knot invariant is a quantity defined on the set of all knots, which takes the same value for any two equivalent knots. For example, a knot group is a knot invariant.

Typically a knot invariant is a combinatorial quantity defined on knot diagrams. Thus if two knot diagrams differ with respect to some knot invariant, they must represent different knots. However, as is generally the case with topological invariants, if two knot diagrams share the same values with respect to a [single] knot invariant, then we still cannot conclude that the knots are the same.

Skein relations are a mathematical tool used to study knots. A central question in the mathematical theory of knots is whether two knot diagrams represent the same knot. One way to answer the question is using knot polynomials, which are invariants of the knot. If two diagrams have different polynomials, they represent different knots. However, the converse is not true.

In the mathematical field of knot theory, the HOMFLY polynomial or HOMFLYPT polynomial, sometimes called the generalized Jones polynomial, is a 2-variable knot polynomial, i.e. a knot invariant in the form of a polynomial of variables m and l.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial.

In geometric topology, the Property P conjecture is a statement about 3-manifolds obtained by Dehn surgery on a knot in the 3-sphere. A knot in the 3-sphere is said to have Property P if every 3-manifold obtained by performing (non-trivial) Dehn surgery on the knot is not simply-connected. The conjecture states that all knots, except the unknot, have Property P.

<span class="mw-page-title-main">Seifert surface</span> Orientable surface whose boundary is a knot or link

In mathematics, a Seifert surface is an orientable surface whose boundary is a given knot or link.

In mathematics, categorification is the process of replacing set-theoretic theorems with category-theoretic analogues. Categorification, when done successfully, replaces sets with categories, functions with functors, and equations with natural isomorphisms of functors satisfying additional properties. The term was coined by Louis Crane.

In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called symplectic Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds.

Peter Benedict Kronheimer is a British mathematician, known for his work on gauge theory and its applications to 3- and 4-dimensional topology. He is William Caspar Graustein Professor of Mathematics at Harvard University and former chair of the mathematics department.

<span class="mw-page-title-main">Unknotting problem</span> Determining whether a knot is the unknot

In mathematics, the unknotting problem is the problem of algorithmically recognizing the unknot, given some representation of a knot, e.g., a knot diagram. There are several types of unknotting algorithms. A major unresolved challenge is to determine if the problem admits a polynomial time algorithm; that is, whether the problem lies in the complexity class P.

<span class="mw-page-title-main">Louis Kauffman</span> American mathematician

Louis Hirsch Kauffman is an American mathematician, mathematical physicist, and professor of mathematics in the Department of Mathematics, Statistics, and Computer Science at the University of Illinois at Chicago. He does research in topology, knot theory, topological quantum field theory, quantum information theory, and diagrammatic and categorical mathematics. He is best known for the introduction and development of the bracket polynomial and the Kauffman polynomial.

In knot theory, the Milnor conjecture says that the slice genus of the torus knot is

Mikhail Khovanov is a Russian-American professor of mathematics at Columbia University who works on representation theory, knot theory, and algebraic topology. He is known for introducing Khovanov homology for links, which was one of the first examples of categorification.

<span class="mw-page-title-main">Tomasz Mrowka</span> American mathematician

Tomasz Mrowka is an American mathematician specializing in differential geometry and gauge theory. He is the Singer Professor of Mathematics and former head of the Department of Mathematics at the Massachusetts Institute of Technology.

In the branch of mathematics called knot theory, the volume conjecture is an open problem that relates quantum invariants of knots to the hyperbolic geometry of their complements.

In theoretical physics, the six-dimensional (2,0)-superconformal field theory is a quantum field theory whose existence is predicted by arguments in string theory. It is still poorly understood because there is no known description of the theory in terms of an action functional. Despite the inherent difficulty in studying this theory, it is considered to be an interesting object for a variety of reasons, both physical and mathematical.

The concept of alternating planar algebras first appeared in the work of Hernando Burgos-Soto on the Jones polynomial of alternating tangles. Alternating planar algebras provide an appropriate algebraic framework for other knot invariants in cases the elements involved in the computation are alternating. The concept has been used in extending to tangles some properties of Jones polynomial and Khovanov homology of alternating links.

References