Perko pair

Last updated
Perko pair
Arf invariant 1
Braid length 10
Braid no. 3
Bridge no. 3
Crosscap no. 2
Crossing no. 10
Genus 3
Hyperbolic volume 5.63877
Unknotting no. 3
Conway notation [3:-20:-20]
A–B notation 10161/10162
Dowker notation 4, 12, -16, 14, -18, 2, 8, -20, -10, -6
Last / Next 10160 /  10162
Other
hyperbolic, fibered, prime, reversible

In the mathematical theory of knots, the Perko pair, named after Kenneth Perko, is a pair of entries in classical knot tables that actually represent the same knot. In Dale Rolfsen's knot table, this supposed pair of distinct knots is labeled 10161 and 10162. In 1973, while working to complete the classification by knot type of the TaitLittle knot tables of knots up to 10 crossings (dating from the late 19th century), [1] Perko found the duplication in Charles Newton Little's table. [2] This duplication had been missed by John Horton Conway several years before in his knot table and subsequently found its way into Rolfsen's table. [3] The Perko pair gives a counterexample to a "theorem" claimed by Little in 1900 that the writhe of a reduced diagram of a knot is an invariant (see Tait conjectures), as the two diagrams for the pair have different writhes.

In some later knot tables, the knots have been renumbered slightly (knots 10163 to 10166 are renumbered as 10162 to 10165) so that knots 10161 and 10162 are different. Some authors have mistaken these two renumbered knots for the Perko pair and claimed incorrectly that they are the same. [4]

The Perko pair was correctly illustrated and explained on the first page of the Science section of the July 8, 1986 New York Times .

Related Research Articles

<span class="mw-page-title-main">Knot theory</span> Study of mathematical knots

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself.

<span class="mw-page-title-main">Knot invariant</span> Function of a knot that takes the same value for equivalent knots

In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some invariants are indeed numbers (algebraic), but invariants can range from the simple, such as a yes/no answer, to those as complex as a homology theory (for example, "a knot invariant is a rule that assigns to any knot K a quantity φ(K) such that if K and K' are equivalent then φ(K) = φ(K')."). Research on invariants is not only motivated by the basic problem of distinguishing one knot from another but also to understand fundamental properties of knots and their relations to other branches of mathematics. Knot invariants are thus used in knot classification, both in "enumeration" and "duplication removal".

A knot invariant is a quantity defined on the set of all knots, which takes the same value for any two equivalent knots. For example, a knot group is a knot invariant.

Typically a knot invariant is a combinatorial quantity defined on knot diagrams. Thus if two knot diagrams differ with respect to some knot invariant, they must represent different knots. However, as is generally the case with topological invariants, if two knot diagrams share the same values with respect to a [single] knot invariant, then we still cannot conclude that the knots are the same.

<span class="mw-page-title-main">Knot (mathematics)</span> Embedding of the circle in three dimensional Euclidean space

In mathematics, a knot is an embedding of the circle S1 into three-dimensional Euclidean space, R3. Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of R3 which takes one knot to the other.

<span class="mw-page-title-main">Borromean rings</span> Three linked but pairwise separated rings

In mathematics, the Borromean rings are three simple closed curves in three-dimensional space that are topologically linked and cannot be separated from each other, but that break apart into two unknotted and unlinked loops when any one of the three is cut or removed. Most commonly, these rings are drawn as three circles in the plane, in the pattern of a Venn diagram, alternatingly crossing over and under each other at the points where they cross. Other triples of curves are said to form the Borromean rings as long as they are topologically equivalent to the curves depicted in this drawing.

In mathematics, the Kirby calculus in geometric topology, named after Robion Kirby, is a method for modifying framed links in the 3-sphere using a finite set of moves, the Kirby moves. Using four-dimensional Cerf theory, he proved that if M and N are 3-manifolds, resulting from Dehn surgery on framed links L and J respectively, then they are homeomorphic if and only if L and J are related by a sequence of Kirby moves. According to the Lickorish–Wallace theorem any closed orientable 3-manifold is obtained by such surgery on some link in the 3-sphere.

<span class="mw-page-title-main">Reidemeister move</span> One of three types of isotopy-preserving local changes to a knot diagram

In the mathematical area of knot theory, a Reidemeister move is any of three local moves on a link diagram. Kurt Reidemeister (1927) and, independently, James Waddell Alexander and Garland Baird Briggs (1926), demonstrated that two knot diagrams belonging to the same knot, up to planar isotopy, can be related by a sequence of the three Reidemeister moves.

<span class="mw-page-title-main">Alternating knot</span>

In knot theory, a knot or link diagram is alternating if the crossings alternate under, over, under, over, as one travels along each component of the link. A link is alternating if it has an alternating diagram.

The Tait conjectures are three conjectures made by 19th-century mathematician Peter Guthrie Tait in his study of knots. The Tait conjectures involve concepts in knot theory such as alternating knots, chirality, and writhe. All of the Tait conjectures have been solved, the most recent being the Flyping conjecture.

<span class="mw-page-title-main">Slice knot</span> Knot that bounds an embedded disk in 4-space

A slice knot is a mathematical knot in 3-dimensional space that bounds an embedded disk in 4-dimensional space.

<span class="mw-page-title-main">Dowker–Thistlethwaite notation</span> Mathematical notation for describing the structure of knots

In the mathematical field of knot theory, the Dowker–Thistlethwaite (DT) notation or code, for a knot is a sequence of even integers. The notation is named after Clifford Hugh Dowker and Morwen Thistlethwaite, who refined a notation originally due to Peter Guthrie Tait.

<span class="mw-page-title-main">Knot tabulation</span> Attempt to classify and tabulate all possible knots

Ever since Sir William Thomson's vortex theory, mathematicians have tried to classify and tabulate all possible knots. As of May 2008, all prime knots up to 16 crossings have been tabulated. The major challenge of the process is that many apparently different knots may actually be different geometrical presentations of the same topological entity, and that proving or disproving knot equivalence is much more difficult than it at first seems.

<span class="mw-page-title-main">Mathematical diagram</span> Visual representation of a mathematical relationship

Mathematical diagrams, such as charts and graphs, are mainly designed to convey mathematical relationships—for example, comparisons over time.

<span class="mw-page-title-main">Ménage problem</span> Assignment problem in combinatorial mathematics

In combinatorial mathematics, the ménage problem or problème des ménages asks for the number of different ways in which it is possible to seat a set of male-female couples at a round dining table so that men and women alternate and nobody sits next to his or her partner. This problem was formulated in 1891 by Édouard Lucas and independently, a few years earlier, by Peter Guthrie Tait in connection with knot theory. For a number of couples equal to 3, 4, 5, ... the number of seating arrangements is

<span class="mw-page-title-main">Mathematical visualization</span>

Mathematical phenomena can be understood and explored via visualization. Classically this consisted of two-dimensional drawings or building three-dimensional models, while today it most frequently consists of using computers to make static two or three dimensional drawings, animations, or interactive programs. Writing programs to visualize mathematics is an aspect of computational geometry.

<span class="mw-page-title-main">Tangle (mathematics)</span>

In mathematics, a tangle is generally one of two related concepts:

<span class="mw-page-title-main">South African Class 6J 4-6-0</span>

The South African Railways Class 6J 4-6-0 of 1902 was a steam locomotive from the pre-Union era in the Cape of Good Hope.

Mary Gertrude Haseman was an American mathematician known for her work in knot theory.

References

  1. Charles Newton Little, Non-alternating +/- knots, Trans. Roy. Soc. Edinburgh 39 (1900), page 774.
  2. Kenneth A. Perko Jr.(b.1943), On the classification of knots. Proc. Amer. Math. Soc. 45 (1974), 262—266.
  3. Dale Rolfsen, Knots and Links (see Appendix C for the knot table), 1976, ISBN   0-914098-16-0.
  4. "The Revenge of the Perko Pair", RichardElwes.co.uk. Accessed February 2016. Richard Elwes points out a common mistake in describing the Perko pair.