Knot invariant

Last updated
Prime knots are organized by the crossing number invariant. Knot table.svg
Prime knots are organized by the crossing number invariant.

In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. [1] Some invariants are indeed numbers (algebraic [2] ), but invariants can range from the simple, such as a yes/no answer, to those as complex as a homology theory (for example, "a knot invariant is a rule that assigns to any knot K a quantity φ(K) such that if K and K' are equivalent then φ(K) = φ(K')." [3] ). Research on invariants is not only motivated by the basic problem of distinguishing one knot from another but also to understand fundamental properties of knots and their relations to other branches of mathematics. Knot invariants are thus used in knot classification, [3] [4] both in "enumeration" and "duplication removal". [2]

Contents

A knot invariant is a quantity defined on the set of all knots, which takes the same value for any two equivalent knots. For example, a knot group is a knot invariant. [5]

Typically a knot invariant is a combinatorial quantity defined on knot diagrams. Thus if two knot diagrams differ with respect to some knot invariant, they must represent different knots. However, as is generally the case with topological invariants, if two knot diagrams share the same values with respect to a [single] knot invariant, then we still cannot conclude that the knots are the same. [6]

From the modern perspective, it is natural to define a knot invariant from a knot diagram. Of course, it must be unchanged (that is to say, invariant) under the Reidemeister moves ("triangular moves" [4] ). Tricolorability (and n-colorability) is a particularly simple and common example. Other examples are knot polynomials, such as the Jones polynomial, which are currently among the most useful invariants for distinguishing knots from one another, though currently it is not known whether there exists a knot polynomial which distinguishes all knots from each other. [7] [8] [9] However, there are invariants which distinguish the unknot from all other knots, such as Khovanov homology and knot Floer homology.

Other invariants can be defined by considering some integer-valued function of knot diagrams and taking its minimum value over all possible diagrams of a given knot. This category includes the crossing number, which is the minimum number of crossings for any diagram of the knot, and the bridge number, which is the minimum number of bridges for any diagram of the knot.

Historically, many of the early knot invariants are not defined by first selecting a diagram but defined intrinsically, which can make computing some of these invariants a challenge. For example, knot genus is particularly tricky to compute, but can be effective (for instance, in distinguishing mutants).

The complement of a knot itself (as a topological space) is known to be a "complete invariant" of the knot by the Gordon–Luecke theorem in the sense that it distinguishes the given knot from all other knots up to ambient isotopy and mirror image. Some invariants associated with the knot complement include the knot group which is just the fundamental group of the complement. The knot quandle is also a complete invariant in this sense but it is difficult to determine if two quandles are isomorphic. The peripheral subgroup can also work as a complete invariant. [10]

By Mostow–Prasad rigidity, the hyperbolic structure on the complement of a hyperbolic link is unique, which means the hyperbolic volume is an invariant for these knots and links. Volume, and other hyperbolic invariants, have proven very effective, utilized in some of the extensive efforts at knot tabulation.

In recent years, there has been much interest in homological invariants of knots which categorify well-known invariants. Heegaard Floer homology is a homology theory whose Euler characteristic is the Alexander polynomial of the knot. It has been proven effective in deducing new results about the classical invariants. Along a different line of study, there is a combinatorially defined cohomology theory of knots called Khovanov homology whose Euler characteristic is the Jones polynomial. This has recently been shown to be useful in obtaining bounds on slice genus whose earlier proofs required gauge theory. Mikhail Khovanov and Lev Rozansky have since defined several other related cohomology theories whose Euler characteristics recover other classical invariants. Catharina Stroppel gave a representation theoretic interpretation of Khovanov homology by categorifying quantum group invariants.

There is also growing interest from both knot theorists and scientists in understanding "physical" or geometric properties of knots and relating it to topological invariants and knot type. An old result in this direction is the Fáry–Milnor theorem states that if the total curvature of a knot K in satisfies

where κ(p) is the curvature at p, then K is an unknot. Therefore, for knotted curves,

An example of a "physical" invariant is ropelength, which is the length of unit-diameter rope needed to realize a particular knot type.

Other invariants

Sources

  1. Schultens, Jennifer (2014). Introduction to 3-manifolds, p.113. American Mathematical Society. ISBN   9781470410209
  2. 1 2 Ricca, Renzo L.; ed. (2012). An Introduction to the Geometry and Topology of Fluid Flows, p.67. Springer Netherlands. ISBN   9789401004466.
  3. 1 2 Purcell, Jessica (2020). Hyperbolic Knot Theory, p.7. American Mathematical Society. ISBN   9781470454999 "A knot invariant is a function from the set of knots to some other set whose value depends only on the equivalence class of the knot."
  4. 1 2 Messer, Robert and Straffin, Philip D. (2018). Topology Now!, p.50. American Mathematical Society. ISBN   9781470447816 "A knot invariant is a mathematical property or quantity associated with a knot that does not change as we perform triangular moves on the knot.
  5. Morishita, Masanori (2011). Knots and Primes: An Introduction to Arithmetic Topology, p.16. Springer London. ISBN   9781447121589. "Likewise," with knot invariants, "a quantity inv(L) = inv(L') for any two equivalent links L and L'."
  6. Ault, Shaun V. (2018). Understanding Topology: A Practical Introduction, p.245. Johns Hopkins University Press. ISBN   9781421424071.
  7. Horner, Kate; Miller, Mark; Steedb, Jonathan; Sutcliffe, Paul (August 20, 2016). "Knot theory in modern chemistry". Chemical Society Reviews . Royal Society of Chemistry. 45 (23): 6409–6658. doi:10.1039/c6cs00448b. PMID   27868114.
  8. Skerritt, Matt (June 27, 2003). "An Introduction to Knot Theory" (PDF). carmamaths.org. p. 22. Archived (PDF) from the original on November 19, 2022. Retrieved November 19, 2022.
  9. Hodorog, Mădălina (February 2, 2010). "Basic Knot Theory" (PDF). www.dk-compmath.jku.at/people/mhodorog/. p. 47. Archived (PDF) from the original on November 19, 2022. Retrieved November 19, 2022.
  10. Waldhausen, Friedhelm (1968). "On Irreducible 3-Manifolds Which are Sufficiently Large". Annals of Mathematics. 87 (1): 56–88. doi:10.2307/1970594. ISSN   0003-486X. JSTOR   1970594.

Further reading

Related Research Articles

<span class="mw-page-title-main">Topology</span> Branch of mathematics

In mathematics, topology concerns with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself.

<span class="mw-page-title-main">Algebraic topology</span> Branch of mathematics

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

<span class="mw-page-title-main">Unknot</span> Loop seen as a trivial knot

In the mathematical theory of knots, the unknot, not knot, or trivial knot, is the least knotted of all knots. Intuitively, the unknot is a closed loop of rope without a knot tied into it, unknotted. To a knot theorist, an unknot is any embedded topological circle in the 3-sphere that is ambient isotopic to a geometrically round circle, the standard unknot.

<span class="mw-page-title-main">Knot theory</span> Study of mathematical knots

In the mathematical field of topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself.

<span class="mw-page-title-main">Knot (mathematics)</span> Embedding of the circle in three dimensional Euclidean space

In mathematics, a knot is an embedding of the circle S1 into three-dimensional Euclidean space, R3. Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of R3 which takes one knot to the other.

<span class="mw-page-title-main">Trefoil knot</span> Simplest non-trivial closed knot with three crossings

In knot theory, a branch of mathematics, the trefoil knot is the simplest example of a nontrivial knot. The trefoil can be obtained by joining together the two loose ends of a common overhand knot, resulting in a knotted loop. As the simplest knot, the trefoil is fundamental to the study of mathematical knot theory.

<span class="mw-page-title-main">Contact geometry</span>

In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem.

<span class="mw-page-title-main">Low-dimensional topology</span> Branch of topology

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial.

<span class="mw-page-title-main">Seifert surface</span> Orientable surface whose boundary is a knot or link

In mathematics, a Seifert surface is an orientable surface whose boundary is a given knot or link.

In mathematics, Khovanov homology is an oriented link invariant that arises as the cohomology of a cochain complex. It may be regarded as a categorification of the Jones polynomial.

In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds.

<span class="mw-page-title-main">Slice knot</span>

A slice knot is a mathematical knot in 3-dimensional space that bounds an embedded disk in 4-dimensional space.

In the mathematical field of knot theory, the Arf invariant of a knot, named after Cahit Arf, is a knot invariant obtained from a quadratic form associated to a Seifert surface. If F is a Seifert surface of a knot, then the homology group H1(F, Z/2Z) has a quadratic form whose value is the number of full twists mod 2 in a neighborhood of an embedded circle representing an element of the homology group. The Arf invariant of this quadratic form is the Arf invariant of the knot.

<span class="mw-page-title-main">Louis Kauffman</span> American mathematician

Louis Hirsch Kauffman is an American mathematician, topologist, and professor of mathematics in the Department of Mathematics, Statistics, and Computer science at the University of Illinois at Chicago. He is known for the introduction and development of the bracket polynomial and the Kauffman polynomial.

The study of manifolds combines many important areas of mathematics: it generalizes concepts such as curves and surfaces as well as ideas from linear algebra and topology. Certain special classes of manifolds also have additional algebraic structure; they may behave like groups, for instance. In that case, they are called Lie Groups. Alternatively, they may be described by polynomial equations, in which case they are called algebraic varieties, and if they additionally carry a group structure, they are called algebraic groups.

<span class="mw-page-title-main">History of knot theory</span>

Knots have been used for basic purposes such as recording information, fastening and tying objects together, for thousands of years. The early, significant stimulus in knot theory would arrive later with Sir William Thomson and his vortex theory of the atom.