Granny knot (mathematics)

Last updated
Granny knot
Math-granny-knot-6crossings.svg
Common name Granny knot
Crossing no. 6
Stick no. 8
A-B notation
Other
alternating, composite, tricolorable
3D depiction Blue Granny Knot.png
3D depiction

In knot theory, the granny knot is a composite knot obtained by taking the connected sum of two identical trefoil knots. It is closely related to the square knot, which can also be described as a connected sum of two trefoils. Because the trefoil knot is the simplest nontrivial knot, the granny knot and the square knot are the simplest of all composite knots.

Contents

The granny knot is the mathematical version of the common granny knot.

Construction

The granny knot can be constructed from two identical trefoil knots, which must either be both left-handed or both right-handed. Each of the two knots is cut, and then the loose ends are joined together pairwise. The resulting connected sum is the granny knot.

It is important that the original trefoil knots be identical to each another. If mirror-image trefoil knots are used instead, the result is a square knot.

Properties

The crossing number of a granny knot is six, which is the smallest possible crossing number for a composite knot. Unlike the square knot, the granny knot is not a ribbon knot or a slice knot.

The Alexander polynomial of the granny knot is

which is simply the square of the Alexander polynomial of a trefoil knot. Similarly, the Conway polynomial of a granny knot is

These two polynomials are the same as those for the square knot. However, the Jones polynomial for the (right-handed) granny knot is

This is the square of the Jones polynomial for the right-handed trefoil knot, and is different from the Jones polynomial for a square knot.

The knot group of the granny knot is given by the presentation

[1]

This is isomorphic to the knot group of the square knot, and is the simplest example of two different knots with isomorphic knot groups.

Related Research Articles

Figure-eight knot (mathematics) unique knot with a crossing number of four

In knot theory, a figure-eight knot is the unique knot with a crossing number of four. This makes it the knot with the third-smallest possible crossing number, after the unknot and the trefoil knot. The figure-eight knot is a prime knot.

Knot theory Study of mathematical knots

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined together so that it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, R3. Two mathematical knots are equivalent if one can be transformed into the other via a deformation of R3 upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself.

Knot polynomial knot invariant that is a polynomial

In the mathematical field of knot theory, a knot polynomial is a knot invariant in the form of a polynomial whose coefficients encode some of the properties of a given knot.

Skein relations are a mathematical tool used to study knots. A central question in the mathematical theory of knots is whether two knot diagrams represent the same knot. One way to answer the question is using knot polynomials, which are invariants of the knot. If two diagrams have different polynomials, they represent different knots. In general, the converse does not hold.

Trefoil knot Simplest non-trivial closed knot with three crossings

In knot theory, a branch of mathematics, the trefoil knot is the simplest example of a nontrivial knot. The trefoil can be obtained by joining together the two loose ends of a common overhand knot, resulting in a knotted loop. As the simplest knot, the trefoil is fundamental to the study of mathematical knot theory.

In the mathematical field of knot theory, the HOMFLYPT polynomial, sometimes called the generalized Jones polynomial, is a 2-variable knot polynomial, i.e. a knot invariant in the form of a polynomial of variables m and l.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial.

In mathematics, a knot is an embedding of a circle into 3-dimensional Euclidean space. The knot group of a knot K is defined as the fundamental group of the knot complement of K in R3,

Torus knot knot which lies on the surface of a torus in 3-dimensional space

In knot theory, a torus knot is a special kind of knot that lies on the surface of an unknotted torus in R3. Similarly, a torus link is a link which lies on the surface of a torus in the same way. Each torus knot is specified by a pair of coprime integers p and q. A torus link arises if p and q are not coprime. A torus knot is trivial if and only if either p or q is equal to 1 or −1. The simplest nontrivial example is the (2,3)-torus knot, also known as the trefoil knot.

In mathematics, Khovanov homology is an oriented link invariant that arises as the homology of a chain complex. It may be regarded as a categorification of the Jones polynomial.

In the mathematical field of knot theory, a chiral knot is a knot that is not equivalent to its mirror image. An oriented knot that is equivalent to its mirror image is an amphichiral knot, also called an achiral knot. The chirality of a knot is a knot invariant. A knot's chirality can be further classified depending on whether or not it is invertible.

In the mathematical field of knot theory, the Arf invariant of a knot, named after Cahit Arf, is a knot invariant obtained from a quadratic form associated to a Seifert surface. If F is a Seifert surface of a knot, then the homology group H1(FZ/2Z) has a quadratic form whose value is the number of full twists mod 2 in a neighborhood of an imbedded circle representing an element of the homology group. The Arf invariant of this quadratic form is the Arf invariant of the knot.

Lissajous knot knot defined by parametric equations defining Lissajous curves

In knot theory, a Lissajous knot is a knot defined by parametric equations of the form

Cinquefoil knot mathematical knot with crossing number 5

In knot theory, the cinquefoil knot, also known as Solomon's seal knot or the pentafoil knot, is one of two knots with crossing number five, the other being the three-twist knot. It is listed as the 51 knot in the Alexander-Briggs notation, and can also be described as the (5,2)-torus knot. The cinquefoil is the closed version of the double overhand knot.

7₁ knot Mathematical knot with crossing number 7

In knot theory, the 71 knot, also known as the septoil knot, the septafoil knot, or the (7, 2)-torus knot, is one of seven prime knots with crossing number seven. It is the simplest torus knot after the trefoil and cinquefoil.

Square knot (mathematics) connected sum of two trefoil knots with opposite chirality

In knot theory, the square knot is a composite knot obtained by taking the connected sum of a trefoil knot with its reflection. It is closely related to the granny knot, which is also a connected sum of two trefoils. Because the trefoil knot is the simplest nontrivial knot, the square knot and the granny knot are the simplest of all composite knots.

Twist knot Family of mathematical knots

In knot theory, a branch of mathematics, a twist knot is a knot obtained by repeatedly twisting a closed loop and then linking the ends together. The twist knots are an infinite family of knots, and are considered the simplest type of knots after the torus knots.

References

  1. Weisstein, Eric W. "Granny Knot". MathWorld .