Knot polynomial

Last updated
Many knot polynomials are computed using skein relations, which allow one to change the different crossings of a knot to get simpler knots. Skein (HOMFLY).svg
Many knot polynomials are computed using skein relations, which allow one to change the different crossings of a knot to get simpler knots.

In the mathematical field of knot theory, a knot polynomial is a knot invariant in the form of a polynomial whose coefficients encode some of the properties of a given knot.

Contents

History

The first knot polynomial, the Alexander polynomial, was introduced by James Waddell Alexander II in 1923. Other knot polynomials were not found until almost 60 years later.

In the 1960s, John Conway came up with a skein relation for a version of the Alexander polynomial, usually referred to as the Alexander–Conway polynomial. The significance of this skein relation was not realized until the early 1980s, when Vaughan Jones discovered the Jones polynomial. This led to the discovery of more knot polynomials, such as the so-called HOMFLY polynomial.

Soon after Jones' discovery, Louis Kauffman noticed the Jones polynomial could be computed by means of a partition function (state-sum model), which involved the bracket polynomial, an invariant of framed knots. This opened up avenues of research linking knot theory and statistical mechanics.

In the late 1980s, two related breakthroughs were made. Edward Witten demonstrated that the Jones polynomial, and similar Jones-type invariants, had an interpretation in Chern–Simons theory. Viktor Vasilyev and Mikhail Goussarov started the theory of finite type invariants of knots. The coefficients of the previously named polynomials are known to be of finite type (after perhaps a suitable "change of variables").

In recent years, the Alexander polynomial has been shown to be related to Floer homology. The graded Euler characteristic of the knot Floer homology of Peter Ozsváth and Zoltan Szabó is the Alexander polynomial.

Examples

Alexander–Briggs notation Alexander polynomial Conway polynomial Jones polynomial HOMFLY polynomial
(Unknot)
(Trefoil Knot)
(Figure-eight Knot)
(Cinquefoil Knot)
(Granny Knot)
(Square Knot)

Alexander–Briggs notation is a notation that simply organizes knots by their crossing number. The order of Alexander–Briggs notation of prime knot is usually sured.[ clarification needed ] (See List of prime knots.)

Alexander polynomials and Conway polynomials can not recognize the difference of left-trefoil knot and right-trefoil knot.

So we have the same situation as the granny knot and square knot since the addition of knots in is the product of knots in knot polynomials.

See also

Specific knot polynomials

Further reading

Related Research Articles

Unknot Loop seen as a trivial knot

In the mathematical theory of knots, the unknot, or trivial knot, is the least knotted of all knots. Intuitively, the unknot is a closed loop of rope without a knot tied into it. To a knot theorist, an unknot is any embedded topological circle in the 3-sphere that is ambient isotopic to a geometrically round circle, the standard unknot.

Knot theory Study of mathematical knots

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined together so that it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself.

Knot invariant

In the mathematical field of knot theory, a knot invariant is a quantity defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some invariants are indeed numbers, but invariants can range from the simple, such as a yes/no answer, to those as complex as a homology theory. Research on invariants is not only motivated by the basic problem of distinguishing one knot from another but also to understand fundamental properties of knots and their relations to other branches of mathematics.

Skein relations are a mathematical tool used to study knots. A central question in the mathematical theory of knots is whether two knot diagrams represent the same knot. One way to answer the question is using knot polynomials, which are invariants of the knot. If two diagrams have different polynomials, they represent different knots. In general, the converse does not hold.

Trefoil knot Simplest non-trivial closed knot with three crossings

In knot theory, a branch of mathematics, the trefoil knot is the simplest example of a nontrivial knot. The trefoil can be obtained by joining together the two loose ends of a common overhand knot, resulting in a knotted loop. As the simplest knot, the trefoil is fundamental to the study of mathematical knot theory.

In the mathematical field of knot theory, the HOMFLY polynomial or HOMFLYPT polynomial, sometimes called the generalized Jones polynomial, is a 2-variable knot polynomial, i.e. a knot invariant in the form of a polynomial of variables m and l.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial.

In mathematics, Khovanov homology is an oriented link invariant that arises as the homology of a chain complex. It may be regarded as a categorification of the Jones polynomial.

In the mathematical theory of knots, a finite type invariant, or Vassiliev invariant, is a knot invariant that can be extended to an invariant of certain singular knots that vanishes on singular knots with m + 1 singularities and does not vanish on some singular knot with 'm' singularities. It is then said to be of type or order m.

In the mathematical field of knot theory, the Arf invariant of a knot, named after Cahit Arf, is a knot invariant obtained from a quadratic form associated to a Seifert surface. If F is a Seifert surface of a knot, then the homology group H1(FZ/2Z) has a quadratic form whose value is the number of full twists mod 2 in a neighborhood of an embedded circle representing an element of the homology group. The Arf invariant of this quadratic form is the Arf invariant of the knot.

Louis Kauffman American mathematician

Louis Hirsch Kauffman is an American mathematician, topologist, and professor of Mathematics in the Department of Mathematics, Statistics, and Computer science at the University of Illinois at Chicago. He is known for the introduction and development of the bracket polynomial and the Kauffman polynomial.

In knot theory, the Kauffman polynomial is a 2-variable knot polynomial due to Louis Kauffman. It is initially defined on a link diagram as

Cinquefoil knot Mathematical knot with crossing number 5

In knot theory, the cinquefoil knot, also known as Solomon's seal knot or the pentafoil knot, is one of two knots with crossing number five, the other being the three-twist knot. It is listed as the 51 knot in the Alexander-Briggs notation, and can also be described as the (5,2)-torus knot. The cinquefoil is the closed version of the double overhand knot.

History of knot theory

Knots have been used for basic purposes such as recording information, fastening and tying objects together, for thousands of years. The early, significant stimulus in knot theory would arrive later with Sir William Thomson and his vortex theory of the atom.

In the mathematical theory of knots, the Kontsevich invariant, also known as the Kontsevich integral of an oriented framed link, is a universal Vassiliev invariant in the sense that any coefficient of the Kontsevich invariant is of a finite type, and conversely any finite type invariant can be presented as a linear combination of such coefficients. It was defined by Maxim Kontsevich.

In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.