Slice knot

Last updated
A smooth slice disk in Morse position, showing minima, saddles and a maximum, and as an illustration a movie for the Kinoshita-Terasaka knot Slice disk annotated in English.svg
A smooth slice disk in Morse position, showing minima, saddles and a maximum, and as an illustration a movie for the Kinoshita–Terasaka knot

A slice knot is a mathematical knot in 3-dimensional space that bounds an embedded disk in 4-dimensional space.

Contents

Definition

A knot is said to be a topologically slice knot or a smoothly slice knot, if it is the boundary of an embedded disk in the 4-ball , which is locally flat or smooth, respectively. Here we use : the 3-sphere is the boundary of the four-dimensional ball Every smoothly slice knot is topologically slice because a smoothly embedded disk is locally flat. Usually, smoothly slice knots are also just called slice. Both types of slice knots are important in 3- and 4-dimensional topology.

Smoothly slice knots are often illustrated using knots diagrams of ribbon knots and it is an open question whether there are any smoothly slice knots which are not ribbon knots (′Slice-ribbon conjecture′).

Cone construction

Cone over the trefoil knot Trefoil cone.png
Cone over the trefoil knot

The conditions locally-flat or smooth are essential in the definition: For every knot we can construct the cone over the knot which is a disk in the 4-ball with the required property with the exception that it is not locally-flat or smooth at the singularity (it works for the trivial knot, though).

Note, that the disk in the illustration on the right does not have self-intersections in 4-space. These only occur in the projection to three-dimensional space. Therefore, the disk is ′correctly′ embedded at every point but not at the singularity (it is not locally-flat there).

Slice knots and the knot concordance group

Two oriented knots are said to be concordant, if the connected sum is slice. In the same way as before, we distinguish topologically and smoothly concordant. With we denote the mirror image of where in addition the orientation is reversed. The relationship ′concordant′ is reflexive because is slice for every knot . It is also possible to show that it is transitive: if is concordant to and is concordant to then is concordant to . Since the relation is also symmetric, it is an equivalence relation. The equivalence classes together with the connected sum of knots as operation then form an abelian group which is called the (topological or smooth) knot concordance group. The neutral element in this group is the set of slice knots (topological or smooth, respectively).

Examples

Using the trefoil knot we illustrate the reflexivity of the concordance relation: every knot is concordant to itself. In the definition of concordance two reversions of orientations occur: The knot orientation is reversed (green and red arrow) and also the orientation of 3-space. The effect of the latter is the knot's mirroring. Trefoil cylinder orientation.svg
Using the trefoil knot we illustrate the reflexivity of the concordance relation: every knot is concordant to itself. In the definition of concordance two reversions of orientations occur: The knot orientation is reversed (green and red arrow) and also the orientation of 3-space. The effect of the latter is the knot's mirroring.

Every ribbon knot is a smoothly slice knot because—with the exception of the ribbon singularities—the knot already bounds an embedded disk (in 3-space). The ribbon singularities may be deformed in a small neighbourhood into 4-space so that the disk is embedded.

There are 21 non-trivial slice prime knots with crossing number . These are , , , , , , , , , , , , , , , , , , , and . Up to this crossing number there are no topologically slice knots which are not smoothly slice. [1] Starting with crossing number 11 there is such an example, however: The Conway knot (named after John Horton Conway) is a topologically but not smoothly slice knot. [2] On the other hand, the Kinoshita-Terasaka knot, a so-called ′mutant′ of the Conway knot, is smoothly slice. Twist knots are, except for the trivial knot and the Stevedore knot , not slice. [3] All topologically and smoothly slice knots with crossing number are known. [4] Composite slice knots up to crossing number 12 are, besides those of the form and , the two more interesting knots and . [5]

Invariants

The following properties are valid for topologically and smoothly slice knots: The Alexander polynomial of a slice knot can be written as with a Laurent polynomial with integer coefficients (Fox-Milnor condition). [6] It follows that the knot's determinant () is a square number.

The signature is an invariant of concordance classes and the signature of slice knots is zero. Furthermore, the signature map is a homomorphism from concordance group to the integers: The signature of the sum of two concordance classes is the sum of the two signatures.

For both variants of the concordance group it is unknown whether elements of finite order exist.

On the other hand, invariants with different properties for the two concordance variants exist: Knots with trivial Alexander polynomial () are always topologically slice, but not necessarily smoothly slice (the Conway knot is an example for that). Rasmussen's s-invariant vanishes for smoothly slice, but in general not for topologically slice knots. [7]

Geometrical description of the concordance relation

Top: The composition of two knot concordances shows the transitivity in a geometric way. Bottom: A concordance of genus 1 between two knots. If the knot on the left is trivial then the knot on the right has a smooth 4-genus of 0 or 1 -- it is the boundary of an embedded surface of genus 1 but could also bound a disk. Knot concordances.svg
Top: The composition of two knot concordances shows the transitivity in a geometric way. Bottom: A concordance of genus 1 between two knots. If the knot on the left is trivial then the knot on the right has a smooth 4-genus of 0 or 1 — it is the boundary of an embedded surface of genus 1 but could also bound a disk.

As an alternative to the above definition of concordance using slice knots there is also a second equivalent definition. Two oriented knots and are concordant if they are the boundary of a (locally flat or smooth) cylinder (in the 4-dimensional space ). The orientations of the two knots have to be consistent to the cylinder's orientation, which is illustrated in the third figure. The boundary of are two with different orientations [8] and therefore two mirrored trefoils are shown as boundary of the cylinder. Connecting the two knots by cutting out a strip from the cylinder yields a disk, showing that for all knots the connected sum is slice. In both definitions a knot is slice if and only if it is concordant to the trivial knot.

This can be illustrated also with the first figure at the top of this article: If a small disk at the local minimum on the bottom left is cut out then the boundary of the surface at this place is a trivial knot and the surface is a cylinder. At the other end of the cylinder we have a slice knot. If the disk (or cylinder) is smoothly embedded it can be slightly deformed to a so-called Morse position.

This is useful because the critical points with respect to the radial function r carry geometrical meaning. At saddle points, trivial components are added or destroyed (band moves, also called fusion and fission). For slice knots any number of these band moves are possible, whereas for ribbon knots only fusions may occur and fissions are not allowed.

In the illustration on the right the geometrical description of the concordance is rotated by 90° and the parameter r is renamed to t. This name fits well to a time interpretation of a surface ′movie′.

4-genus

An analogous definition as for slice knots may be done with surfaces of larger genus. The 4-genus (also called ′slice genus′) of a knot is therefore defined as the smallest genus of an embedded surface in 4-space of which the knot is the boundary. As before, we distinguish the topological and smooth 4-genus. Knots with 4-genus 0 are slice knots because a disk, the simplest surface, has genus 0. The 4-genus is always smaller or equal to the knot's genus because this invariant is defined using Seifert surfaces which are embedded already in three-dimensional space.

Examples for knots with different values for their topological and smooth 4-genus are listed in the following table. The Conway knot 11n34 is, as already mentioned, the first example in the knot tables for a topologically but not smoothly slice knot. Judging from the values in the table we could conclude that the smooth and the topological 4-genus always differ by 1, when they are not equal. This is not the case, however, and the difference can be arbitrarily large. [9] It is not known, though, (as of 2017), whether there are alternating knots with a difference > 1. [10]

4-genus (smooth)424331
4-genus (top.)313220

Bibliography

See also

Related Research Articles

<span class="mw-page-title-main">Surface (topology)</span> Two-dimensional manifold

In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.

<span class="mw-page-title-main">Möbius strip</span> Non-orientable surface with one edge

In mathematics, a Möbius strip, Möbius band, or Möbius loop is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and August Ferdinand Möbius in 1858, but it had already appeared in Roman mosaics from the third century CE. The Möbius strip is a non-orientable surface, meaning that within it one cannot consistently distinguish clockwise from counterclockwise turns. Every non-orientable surface contains a Möbius strip.

<span class="mw-page-title-main">Torus</span> Doughnut-shaped surface of revolution

In geometry, a torus is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut.

<span class="mw-page-title-main">Knot theory</span> Study of mathematical knots

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself.

<span class="mw-page-title-main">Cobordism</span>

In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary of a manifold. Two manifolds of the same dimension are cobordant if their disjoint union is the boundary of a compact manifold one dimension higher.

In gauge theory and mathematical physics, a topological quantum field theory is a quantum field theory which computes topological invariants.

<span class="mw-page-title-main">Geometric topology</span> Branch of mathematics studying (smooth) functions of manifolds

In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another.

<span class="mw-page-title-main">Low-dimensional topology</span> Branch of topology

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

In geometric topology and differential topology, an (n + 1)-dimensional cobordism W between n-dimensional manifolds M and N is an h-cobordism (the h stands for homotopy equivalence) if the inclusion maps

In mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space.

In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial.

<span class="mw-page-title-main">Seifert surface</span> Orientable surface whose boundary is a knot or link

In mathematics, a Seifert surface is an orientable surface whose boundary is a given knot or link.

In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique.

In mathematics, the slice genus of a smooth knot K in S3 is the least integer g such that K is the boundary of a connected, orientable 2-manifold S of genus g properly embedded in the 4-ball D4 bounded by S3.

<span class="mw-page-title-main">Arf invariant</span>

In mathematics, the Arf invariant of a nonsingular quadratic form over a field of characteristic 2 was defined by Turkish mathematician Cahit Arf (1941) when he started the systematic study of quadratic forms over arbitrary fields of characteristic 2. The Arf invariant is the substitute, in characteristic 2, for the discriminant for quadratic forms in characteristic not 2. Arf used his invariant, among others, in his endeavor to classify quadratic forms in characteristic 2.

<span class="mw-page-title-main">Immersion (mathematics)</span> Differentiable function whose derivative is everywhere injective

In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential pushforward is everywhere injective. Explicitly, f : MN is an immersion if

<span class="mw-page-title-main">Ribbon knot</span> Type of mathematical knot

In the mathematical area of knot theory, a ribbon knot is a knot that bounds a self-intersecting disk with only ribbon singularities. Intuitively, this kind of singularity can be formed by cutting a slit in the disk and passing another part of the disk through the slit. More precisely, this type of singularity is a closed arc consisting of intersection points of the disk with itself, such that the preimage of this arc consists of two arcs in the disc, one completely in the interior of the disk and the other having its two endpoints on the disk boundary.

In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain.

In mathematics, two links and are concordant if there exists an embedding such that and .

References

  1. See C. Livingston and A. H. Moore: KnotInfo: Table of Knot Invariants, https://knotinfo.math.indiana.edu/ for the notation and list of slice knots (genus-4D = 0 and genus-4D (Top.) = 0).
  2. Lisa Piccirillo: The Conway knot is not slice. Ann. of Math. 191, No. 2, p. 581–591, 2020.
  3. Andrew Casson, Cameron Gordon: Cobordism of Classical Knots, in: A. Marin, L. Guillou: A la recherche de la topologie perdue, Progress in Mathematics, Birkhäuser 1986.
  4. Ribbon diagrams for them can be found in: C. Lamm, The Search for Nonsymmetric Ribbon Knots, Exp. Math. 30, p. 349–363, 2021.
  5. The mirror variants of the knots have to be chosen in a way that the total signature is 0.
  6. Ralph Fox, John Milnor: Singularities of 2-Spheres in 4-Space and Cobordism of Knots. Osaka J. Math. 3, p. 257–267, 1966.
  7. Jacob Rasmussen: Khovanov homology and the slice genus. Inv. Math. 182, p. 419–447, 2010.
  8. For the orientation of a product see Tammo tom Dieck: Algebraic Topology, EMS Textbooks in Mathematics, 2008 (online , p. 373).
  9. P. Feller, D. McCoy: On 2-bridge knots with differing smooth and topological slice genera, Proc. Amer. Math. Soc. 144, p. 5435–5442, 2016.
  10. See the conference report Thirty Years of Floer Theory for 3-manifolds, Banff International Research Station, 2017, Problem 25, p. 12.