Arf invariant of a knot

Last updated

In the mathematical field of knot theory, the Arf invariant of a knot, named after Cahit Arf, is a knot invariant obtained from a quadratic form associated to a Seifert surface. If F is a Seifert surface of a knot, then the homology group H1(F, Z/2Z) has a quadratic form whose value is the number of full twists mod 2 in a neighborhood of an embedded circle representing an element of the homology group. The Arf invariant of this quadratic form is the Arf invariant of the knot.

Contents

Definition by Seifert matrix

Let be a Seifert matrix of the knot, constructed from a set of curves on a Seifert surface of genus g which represent a basis for the first homology of the surface. This means that V is a 2g × 2g matrix with the property that VVT is a symplectic matrix. The Arf invariant of the knot is the residue of

Specifically, if , is a symplectic basis for the intersection form on the Seifert surface, then

where lk is the link number and denotes the positive pushoff of a.

Definition by pass equivalence

This approach to the Arf invariant is due to Louis Kauffman.

We define two knots to be pass equivalent if they are related by a finite sequence of pass-moves. [1]

Every knot is pass-equivalent to either the unknot or the trefoil; these two knots are not pass-equivalent and additionally, the right- and left-handed trefoils are pass-equivalent. [2]

Now we can define the Arf invariant of a knot to be 0 if it is pass-equivalent to the unknot, or 1 if it is pass-equivalent to the trefoil. This definition is equivalent to the one above.

Definition by partition function

Vaughan Jones showed that the Arf invariant can be obtained by taking the partition function of a signed planar graph associated to a knot diagram.

Definition by Alexander polynomial

This approach to the Arf invariant is by Raymond Robertello. [3] Let

be the Alexander polynomial of the knot. Then the Arf invariant is the residue of

modulo 2, where r = 0 for n odd, and r = 1 for n even.

Kunio Murasugi [4] proved that the Arf invariant is zero if and only if Δ(−1) ≡ ±1 modulo 8.

Arf as knot concordance invariant

From the Fox-Milnor criterion, which tells us that the Alexander polynomial of a slice knot factors as for some polynomial with integer coefficients, we know that the determinant of a slice knot is a square integer. As is an odd integer, it has to be congruent to 1 modulo 8. Combined with Murasugi's result this shows that the Arf invariant of a slice knot vanishes.

Notes

  1. Kauffman (1987) p.74
  2. Kauffman (1987) pp.75–78
  3. Robertello, Raymond, An Invariant of Knot Corbordism, Communications on Pure and Applied Mathematics, Volume 18, pp. 543555, 1965
  4. Murasugi, Kunio, The Arf Invariant for Knot Types, Proceedings of the American Mathematical Society, Vol. 21, No. 1. (Apr., 1969), pp. 6972

Related Research Articles

In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and determines various properties of the roots. It is generally defined as a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry. It is often denoted by the symbol .

Knot theory Study of mathematical knots

In the mathematical field of topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing through itself.

The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type developed by Edward Witten. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who introduced the Chern–Simons 3-form. In the Chern–Simons theory, the action is proportional to the integral of the Chern–Simons 3-form.

Trefoil knot Simplest non-trivial closed knot with three crossings

In knot theory, a branch of mathematics, the trefoil knot is the simplest example of a nontrivial knot. The trefoil can be obtained by joining together the two loose ends of a common overhand knot, resulting in a knotted loop. As the simplest knot, the trefoil is fundamental to the study of mathematical knot theory.

In mathematics, algebraic L-theory is the K-theory of quadratic forms; the term was coined by C. T. C. Wall, with L being used as the letter after K. Algebraic L-theory, also known as "Hermitian K-theory", is important in surgery theory.

In the mathematical field of knot theory, the HOMFLY polynomial or HOMFLYPT polynomial, sometimes called the generalized Jones polynomial, is a 2-variable knot polynomial, i.e. a knot invariant in the form of a polynomial of variables m and l.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial.

Seifert surface Orientable surface whose boundary is a knot or link

In mathematics, a Seifert surface is an orientable surface whose boundary is a given knot or link.

The signature of a knot is a topological invariant in knot theory. It may be computed from the Seifert surface.

In mathematics, Khovanov homology is an oriented link invariant that arises as the homology of a chain complex. It may be regarded as a categorification of the Jones polynomial.

In the mathematical theory of knots, a finite type invariant, or Vassiliev invariant, is a knot invariant that can be extended to an invariant of certain singular knots that vanishes on singular knots with m + 1 singularities and does not vanish on some singular knot with 'm' singularities. It is then said to be of type or order m.

Arf invariant

In mathematics, the Arf invariant of a nonsingular quadratic form over a field of characteristic 2 was defined by Turkish mathematician Cahit Arf (1941) when he started the systematic study of quadratic forms over arbitrary fields of characteristic 2. The Arf invariant is the substitute, in characteristic 2, for the discriminant for quadratic forms in characteristic not 2. Arf used his invariant, among others, in his endeavor to classify quadratic forms in characteristic 2.

In 4-dimensional topology, a branch of mathematics, Rokhlin's theorem states that if a smooth, closed 4-manifold M has a spin structure, then the signature of its intersection form, a quadratic form on the second cohomology group , is divisible by 16. The theorem is named for Vladimir Rokhlin, who proved it in 1952.

In 3-dimensional topology, a part of the mathematical field of geometric topology, the Casson invariant is an integer-valued invariant of oriented integral homology 3-spheres, introduced by Andrew Casson.

In knot theory, the Kauffman polynomial is a 2-variable knot polynomial due to Louis Kauffman. It is initially defined on a link diagram as

In mathematics, the Kervaire invariant is an invariant of a framed -dimensional manifold that measures whether the manifold could be surgically converted into a sphere. This invariant evaluates to 0 if the manifold can be converted to a sphere, and 1 otherwise. This invariant was named after Michel Kervaire who built on work of Cahit Arf.

In mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory.

In mathematics, Reidemeister torsion is a topological invariant of manifolds introduced by Kurt Reidemeister for 3-manifolds and generalized to higher dimensions by Wolfgang Franz (1935) and Georges de Rham (1936). Analytic torsion is an invariant of Riemannian manifolds defined by Daniel B. Ray and Isadore M. Singer as an analytic analogue of Reidemeister torsion. Jeff Cheeger and Werner Müller (1978) proved Ray and Singer's conjecture that Reidemeister torsion and analytic torsion are the same for compact Riemannian manifolds.

References