Satellite knot

Last updated

In the mathematical theory of knots, a satellite knot is a knot that contains an incompressible, non boundary-parallel torus in its complement. [1] Every knot is either hyperbolic, a torus, or a satellite knot. The class of satellite knots include composite knots, cable knots, and Whitehead doubles. A satellite link is one that orbits a companion knot K in the sense that it lies inside a regular neighborhood of the companion. [2] :217

Contents

A satellite knot can be picturesquely described as follows: start by taking a nontrivial knot lying inside an unknotted solid torus . Here "nontrivial" means that the knot is not allowed to sit inside of a 3-ball in and is not allowed to be isotopic to the central core curve of the solid torus. Then tie up the solid torus into a nontrivial knot.

This means there is a non-trivial embedding and . The central core curve of the solid torus is sent to a knot , which is called the "companion knot" and is thought of as the planet around which the "satellite knot" orbits. The construction ensures that is a non-boundary parallel incompressible torus in the complement of . Composite knots contain a certain kind of incompressible torus called a swallow-follow torus, which can be visualized as swallowing one summand and following another summand.

Since is an unknotted solid torus, is a tubular neighbourhood of an unknot . The 2-component link together with the embedding is called the pattern associated to the satellite operation.

A convention: people usually demand that the embedding is untwisted in the sense that must send the standard longitude of to the standard longitude of . Said another way, given any two disjoint curves , preserves their linking numbers i.e.: .

Basic families

When is a torus knot, then is called a cable knot. Examples 3 and 4 are cable knots. The cable constructed with given winding numbers (m,n) from another knot K, is often called the (m,n) cable of K.

If is a non-trivial knot in and if a compressing disc for intersects in precisely one point, then is called a connect-sum. Another way to say this is that the pattern is the connect-sum of a non-trivial knot with a Hopf link.

If the link is the Whitehead link, is called a Whitehead double. If is untwisted, is called an untwisted Whitehead double.

Examples

Examples 5 and 6 are variants on the same construction. They both have two non-parallel, non-boundary-parallel incompressible tori in their complements, splitting the complement into the union of three manifolds. In 5, those manifolds are: the Borromean rings complement, trefoil complement, and figure-8 complement. In 6, the figure-8 complement is replaced by another trefoil complement.

Origins

In 1949 [3] Horst Schubert proved that every oriented knot in decomposes as a connect-sum of prime knots in a unique way, up to reordering, making the monoid of oriented isotopy-classes of knots in a free commutative monoid on countably-infinite many generators. Shortly after, he realized he could give a new proof of his theorem by a close analysis of the incompressible tori present in the complement of a connect-sum. This led him to study general incompressible tori in knot complements in his epic work Knoten und Vollringe, [4] where he defined satellite and companion knots.

Follow-up work

Schubert's demonstration that incompressible tori play a major role in knot theory was one several early insights leading to the unification of 3-manifold theory and knot theory. It attracted Waldhausen's attention, who later used incompressible surfaces to show that a large class of 3-manifolds are homeomorphic if and only if their fundamental groups are isomorphic. [5] Waldhausen conjectured what is now the JacoShalenJohannson-decomposition of 3-manifolds, which is a decomposition of 3-manifolds along spheres and incompressible tori. This later became a major ingredient in the development of geometrization, which can be seen as a partial-classification of 3-dimensional manifolds. The ramifications for knot theory were first described in the long-unpublished manuscript of Bonahon and Siebenmann. [6]

Uniqueness of satellite decomposition

In Knoten und Vollringe, Schubert proved that in some cases, there is essentially a unique way to express a knot as a satellite. But there are also many known examples where the decomposition is not unique. [7] With a suitably enhanced notion of satellite operation called splicing, the JSJ decomposition gives a proper uniqueness theorem for satellite knots. [8] [9]

See also

Related Research Articles

<span class="mw-page-title-main">Knot theory</span> Study of mathematical knots

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself.

In mathematics, the JSJ decomposition, also known as the toral decomposition, is a topological construct given by the following theorem:

In mathematics, a Haken manifold is a compact, P²-irreducible 3-manifold that is sufficiently large, meaning that it contains a properly embedded two-sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in which case a Haken manifold is a compact, orientable, irreducible 3-manifold that contains an orientable, incompressible surface.

<span class="mw-page-title-main">Prime knot</span> Non-trivial knot which cannot be written as the knot sum of two non-trivial knots

In knot theory, a prime knot or prime link is a knot that is, in a certain sense, indecomposable. Specifically, it is a non-trivial knot which cannot be written as the knot sum of two non-trivial knots. Knots that are not prime are said to be composite knots or composite links. It can be a nontrivial problem to determine whether a given knot is prime or not.

<span class="mw-page-title-main">Trefoil knot</span> Simplest non-trivial closed knot with three crossings

In knot theory, a branch of mathematics, the trefoil knot is the simplest example of a nontrivial knot. The trefoil can be obtained by joining the two loose ends of a common overhand knot, resulting in a knotted loop. As the simplest knot, the trefoil is fundamental to the study of mathematical knot theory.

<span class="mw-page-title-main">Connected sum</span> Way to join two given mathematical manifolds together

In mathematics, specifically in topology, the operation of connected sum is a geometric modification on manifolds. Its effect is to join two given manifolds together near a chosen point on each. This construction plays a key role in the classification of closed surfaces.

<span class="mw-page-title-main">Low-dimensional topology</span> Branch of topology

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

In the mathematical field of geometric topology, a Heegaard splitting is a decomposition of a compact oriented 3-manifold that results from dividing it into two handlebodies.

<span class="mw-page-title-main">3-manifold</span> Mathematical space

In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small and close enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.

In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial.

<span class="mw-page-title-main">Allen Hatcher</span> American mathematician

Allen Edward Hatcher is an American topologist.

<span class="mw-page-title-main">Torus knot</span> Knot which lies on the surface of a torus in 3-dimensional space

In knot theory, a torus knot is a special kind of knot that lies on the surface of an unknotted torus in R3. Similarly, a torus link is a link which lies on the surface of a torus in the same way. Each torus knot is specified by a pair of coprime integers p and q. A torus link arises if p and q are not coprime. A torus knot is trivial if and only if either p or q is equal to 1 or −1. The simplest nontrivial example is the (2,3)-torus knot, also known as the trefoil knot.

<span class="mw-page-title-main">Seifert surface</span> Orientable surface whose boundary is a knot or link

In mathematics, a Seifert surface is an orientable surface whose boundary is a given knot or link.

In mathematics, Alexander duality refers to a duality theory initiated by a result of J. W. Alexander in 1915, and subsequently further developed, particularly by Pavel Alexandrov and Lev Pontryagin. It applies to the homology theory properties of the complement of a subspace X in Euclidean space, a sphere, or other manifold. It is generalized by Spanier–Whitehead duality.

In the mathematical field of knot theory, the crosscap number of a knot K is the minimum of

In the mathematical field of knot theory, Fox n-coloring is a method of specifying a representation of a knot group or a group of a link onto the dihedral group of order n where n is an odd integer by coloring arcs in a link diagram. Ralph Fox discovered this method "in an effort to make the subject accessible to everyone" when he was explaining knot theory to undergraduate students at Haverford College in 1956. Fox n-coloring is an example of a conjugation quandle.

In the branch of mathematics called knot theory, the volume conjecture is an open problem that relates quantum invariants of knots to the hyperbolic geometry of their complements.

Horst Schubert was a German mathematician.

References

  1. Colin Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, (2001), ISBN   0-7167-4219-5
  2. Menasco, William; Thistlethwaite, Morwen, eds. (2005). Handbook of Knot Theory. Elsevier. ISBN   0080459544 . Retrieved 2014-08-18.
  3. Schubert, H. Die eindeutige Zerlegbarkeit eines Knotens in Primknoten. S.-B Heidelberger Akad. Wiss. Math.-Nat. Kl. 1949 (1949), 57104.
  4. Schubert, H. Knoten und Vollringe. Acta Math. 90 (1953), 131286.
  5. Waldhausen, F. On irreducible 3-manifolds which are sufficiently large.Ann. of Math. (2) 87 (1968), 5688.
  6. F.Bonahon, L.Siebenmann, New Geometric Splittings of Classical Knots, and the Classification and Symmetries of Arborescent Knots,
  7. Motegi, K. Knot Types of Satellite Knots and Twisted Knots. Lectures at Knots '96. World Scientific.
  8. Eisenbud, D. Neumann, W. Three-dimensional link theory and invariants of plane curve singularities. Ann. of Math. Stud. 110
  9. Budney, R. JSJ-decompositions of knot and link complements in S^3. L'enseignement Mathematique 2e Serie Tome 52 Fasc. 34 (2006). arXiv:math.GT/0506523