Unknotting number

Last updated
Trefoil knot without 3-fold symmetry being unknotted by one crossing switch. Unknotting trefoil.svg
Trefoil knot without 3-fold symmetry being unknotted by one crossing switch.
Whitehead link being unknotted by undoing one crossing Unknotting Whitehead link.svg
Whitehead link being unknotted by undoing one crossing

In the mathematical area of knot theory, the unknotting number of a knot is the minimum number of times the knot must be passed through itself (crossing switch) to untie it. If a knot has unknotting number , then there exists a diagram of the knot which can be changed to unknot by switching crossings. [1] The unknotting number of a knot is always less than half of its crossing number. [2] This invariant was first defined by Hilmar Wendt in 1936. [3]

Contents

Any composite knot has unknotting number at least two, and therefore every knot with unknotting number one is a prime knot. The following table show the unknotting numbers for the first few knots:

In general, it is relatively difficult to determine the unknotting number of a given knot. Known cases include:

Other numerical knot invariants

See also

Related Research Articles

<span class="mw-page-title-main">Unknot</span> Loop seen as a trivial knot

In the mathematical theory of knots, the unknot, not knot, or trivial knot, is the least knotted of all knots. Intuitively, the unknot is a closed loop of rope without a knot tied into it, unknotted. To a knot theorist, an unknot is any embedded topological circle in the 3-sphere that is ambient isotopic to a geometrically round circle, the standard unknot.

<span class="mw-page-title-main">Knot theory</span> Study of mathematical knots

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself.

<span class="mw-page-title-main">Knot (mathematics)</span> Embedding of the circle in three dimensional Euclidean space

In mathematics, a knot is an embedding of the circle S1 into three-dimensional Euclidean space, R3. Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of R3 which takes one knot to the other.

<span class="mw-page-title-main">Trefoil knot</span> Simplest non-trivial closed knot with three crossings

In knot theory, a branch of mathematics, the trefoil knot is the simplest example of a nontrivial knot. The trefoil can be obtained by joining together the two loose ends of a common overhand knot, resulting in a knotted loop. As the simplest knot, the trefoil is fundamental to the study of mathematical knot theory.

<span class="mw-page-title-main">Linking number</span> Numerical invariant that describes the linking of two closed curves in three-dimensional space

In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other. In Euclidean space, the linking number is always an integer, but may be positive or negative depending on the orientation of the two curves.

In knot theory, there are several competing notions of the quantity writhe, or . In one sense, it is purely a property of an oriented link diagram and assumes integer values. In another sense, it is a quantity that describes the amount of "coiling" of a mathematical knot in three-dimensional space and assumes real numbers as values. In both cases, writhe is a geometric quantity, meaning that while deforming a curve in such a way that does not change its topology, one may still change its writhe.

<span class="mw-page-title-main">Reductive group</span>

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial.

<span class="mw-page-title-main">Reidemeister move</span> One of three types of isotopy-preserving local changes to a knot diagram

In the mathematical area of knot theory, a Reidemeister move is any of three local moves on a link diagram. Kurt Reidemeister (1927) and, independently, James Waddell Alexander and Garland Baird Briggs (1926), demonstrated that two knot diagrams belonging to the same knot, up to planar isotopy, can be related by a sequence of the three Reidemeister moves.

<span class="mw-page-title-main">Torus knot</span> Knot which lies on the surface of a torus in 3-dimensional space

In knot theory, a torus knot is a special kind of knot that lies on the surface of an unknotted torus in R3. Similarly, a torus link is a link which lies on the surface of a torus in the same way. Each torus knot is specified by a pair of coprime integers p and q. A torus link arises if p and q are not coprime. A torus knot is trivial if and only if either p or q is equal to 1 or −1. The simplest nontrivial example is the (2,3)-torus knot, also known as the trefoil knot.

<span class="mw-page-title-main">Seifert surface</span> Orientable surface whose boundary is a knot or link

In mathematics, a Seifert surface is an orientable surface whose boundary is a given knot or link.

<span class="mw-page-title-main">Tricolorability</span> Knot theory property

In the mathematical field of knot theory, the tricolorability of a knot is the ability of a knot to be colored with three colors subject to certain rules. Tricolorability is an isotopy invariant, and hence can be used to distinguish between two different (non-isotopic) knots. In particular, since the unknot is not tricolorable, any tricolorable knot is necessarily nontrivial.

In the mathematical theory of knots, a satellite knot is a knot that contains an incompressible, non boundary-parallel torus in its complement. Every knot is either hyperbolic, a torus, or a satellite knot. The class of satellite knots include composite knots, cable knots, and Whitehead doubles. A satellite link is one that orbits a companion knot K in the sense that it lies inside a regular neighborhood of the companion.

<span class="mw-page-title-main">Stick number</span> Smallest number of edges of an equivalent polygonal path for a knot

In the mathematical theory of knots, the stick number is a knot invariant that intuitively gives the smallest number of straight "sticks" stuck end to end needed to form a knot. Specifically, given any knot , the stick number of , denoted by , is the smallest number of edges of a polygonal path equivalent to .

<span class="mw-page-title-main">Crossing number (knot theory)</span> Integer-valued knot invariant; least number of crossings in a knot diagram

In the mathematical area of knot theory, the crossing number of a knot is the smallest number of crossings of any diagram of the knot. It is a knot invariant.

In knot theory, an area of mathematics, the link group of a link is an analog of the knot group of a knot. They were described by John Milnor in his Ph.D. thesis,. Notably, the link group is not in general the fundamental group of the link complement.

<span class="mw-page-title-main">Twist knot</span> Family of mathematical knots

In knot theory, a branch of mathematics, a twist knot is a knot obtained by repeatedly twisting a closed loop and then linking the ends together. The twist knots are an infinite family of knots, and are considered the simplest type of knots after the torus knots.

References

  1. Adams, Colin Conrad (2004). The knot book: an elementary introduction to the mathematical theory of knots. Providence, Rhode Island: American Mathematical Society. p. 56. ISBN   0-8218-3678-1.
  2. Taniyama, Kouki (2009), "Unknotting numbers of diagrams of a given nontrivial knot are unbounded", Journal of Knot Theory and its Ramifications, 18 (8): 1049–1063, arXiv: 0805.3174 , doi:10.1142/S0218216509007361, MR   2554334 .
  3. Wendt, Hilmar (December 1937). "Die gordische Auflösung von Knoten". Mathematische Zeitschrift. 42 (1): 680–696. doi:10.1007/BF01160103.
  4. "Torus Knot", Mathworld.Wolfram.com. "".
  5. Weisstein, Eric W. "Unknotting Number". MathWorld .