Trefoil knot

Last updated
Trefoil
Blue Trefoil Knot Animated.gif
Common name Overhand knot
Arf invariant 1
Braid length 3
Braid no. 2
Bridge no. 2
Crosscap no. 1
Crossing no. 3
Genus 1
Hyperbolic volume 0
Stick no. 6
Tunnel no. 1
Unknotting no. 1
Conway notation [3]
A–B notation 31
Dowker notation 4, 6, 2
Last / Next 01 /  41
Other
alternating, torus, fibered, pretzel, prime, knot slice, reversible, tricolorable, twist

In knot theory, a branch of mathematics, the trefoil knot is the simplest example of a nontrivial knot. The trefoil can be obtained by joining the two loose ends of a common overhand knot, resulting in a knotted loop. As the simplest knot, the trefoil is fundamental to the study of mathematical knot theory.

Contents

The trefoil knot is named after the three-leaf clover (or trefoil) plant.

Descriptions

The trefoil knot can be defined as the curve obtained from the following parametric equations:

The (2,3)-torus knot is also a trefoil knot. The following parametric equations give a (2,3)-torus knot lying on torus :

Video on making a trefoil knot
Overhand knot becomes a trefoil knot by joining the ends. Example of Knots.svg
Overhand knot becomes a trefoil knot by joining the ends.
A realization of the trefoil knot Trefoil Knot.gif
A realization of the trefoil knot

Any continuous deformation of the curve above is also considered a trefoil knot. Specifically, any curve isotopic to a trefoil knot is also considered to be a trefoil. In addition, the mirror image of a trefoil knot is also considered to be a trefoil. In topology and knot theory, the trefoil is usually defined using a knot diagram instead of an explicit parametric equation.

In algebraic geometry, the trefoil can also be obtained as the intersection in C2 of the unit 3-sphere S3 with the complex plane curve of zeroes of the complex polynomial z2 + w3 (a cuspidal cubic).

Trefoil knot left.svg
TrefoilKnot 01.svg
A left-handed trefoil and a right-handed trefoil.

If one end of a tape or belt is turned over three times and then pasted to the other, the edge forms a trefoil knot. [1]

Symmetry

The trefoil knot is chiral, in the sense that a trefoil knot can be distinguished from its own mirror image. The two resulting variants are known as the left-handed trefoil and the right-handed trefoil. It is not possible to deform a left-handed trefoil continuously into a right-handed trefoil, or vice versa. (That is, the two trefoils are not ambient isotopic.)

Though chiral, the trefoil knot is also invertible, meaning that there is no distinction between a counterclockwise-oriented and a clockwise-oriented trefoil. That is, the chirality of a trefoil depends only on the over and under crossings, not the orientation of the curve.

The trefoil knot is tricolorable. Tricoloring.png
The trefoil knot is tricolorable.
Form of trefoil knot without visual three-fold symmetry Trefoil-non-3-symm.svg
Form of trefoil knot without visual three-fold symmetry

Nontriviality

The trefoil knot is nontrivial, meaning that it is not possible to "untie" a trefoil knot in three dimensions without cutting it. Mathematically, this means that a trefoil knot is not isotopic to the unknot. In particular, there is no sequence of Reidemeister moves that will untie a trefoil.

Proving this requires the construction of a knot invariant that distinguishes the trefoil from the unknot. The simplest such invariant is tricolorability: the trefoil is tricolorable, but the unknot is not. In addition, virtually every major knot polynomial distinguishes the trefoil from an unknot, as do most other strong knot invariants.

Classification

In knot theory, the trefoil is the first nontrivial knot, and is the only knot with crossing number three. It is a prime knot, and is listed as 31 in the Alexander-Briggs notation. The Dowker notation for the trefoil is 4 6 2, and the Conway notation is [3].

The trefoil can be described as the (2,3)-torus knot. It is also the knot obtained by closing the braid σ13.

The trefoil is an alternating knot. However, it is not a slice knot, meaning it does not bound a smooth 2-dimensional disk in the 4-dimensional ball; one way to prove this is to note that its signature is not zero. Another proof is that its Alexander polynomial does not satisfy the Fox-Milnor condition.

The trefoil is a fibered knot, meaning that its complement in is a fiber bundle over the circle . The trefoil K may be viewed as the set of pairs of complex numbers such that and . Then this fiber bundle has the Milnor map as the fibre bundle projection of the knot complement to the circle . The fibre is a once-punctured torus. Since the knot complement is also a Seifert fibred with boundary, it has a horizontal incompressible surface—this is also the fiber of the Milnor map. (This assumes the knot has been thickened to become a solid torus Nε(K), and that the interior of this solid torus has been removed to create a compact knot complement .)

Invariants

The Alexander polynomial of the trefoil knot is

and the Conway polynomial is [2]

The Jones polynomial is

and the Kauffman polynomial of the trefoil is

The HOMFLY polynomial of the trefoil is

The knot group of the trefoil is given by the presentation

or equivalently [3]

This group is isomorphic to the braid group with three strands.

In religion and culture

As the simplest nontrivial knot, the trefoil is a common motif in iconography and the visual arts. For example, the common form of the triquetra symbol is a trefoil, as are some versions of the Germanic Valknut.

In modern art, the woodcut Knots by M. C. Escher depicts three trefoil knots whose solid forms are twisted in different ways. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Figure-eight knot (mathematics)</span> Unique knot with a crossing number of four

In knot theory, a figure-eight knot is the unique knot with a crossing number of four. This makes it the knot with the third-smallest possible crossing number, after the unknot and the trefoil knot. The figure-eight knot is a prime knot.

<span class="mw-page-title-main">Torus</span> Doughnut-shaped surface of revolution

In geometry, a torus is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut.

<span class="mw-page-title-main">Knot theory</span> Study of mathematical knots

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself.

<span class="mw-page-title-main">Parametric equation</span> Representation of a curve by a function of a parameter

In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, called a parametric curve and parametric surface, respectively. In such cases, the equations are collectively called a parametric representation, or parametric system, or parameterization of the object.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

In mathematics, a knot is an embedding of a circle into 3-dimensional Euclidean space. The knot group of a knot K is defined as the fundamental group of the knot complement of K in R3,

<span class="mw-page-title-main">Torus knot</span> Knot which lies on the surface of a torus in 3-dimensional space

In knot theory, a torus knot is a special kind of knot that lies on the surface of an unknotted torus in R3. Similarly, a torus link is a link which lies on the surface of a torus in the same way. Each torus knot is specified by a pair of coprime integers p and q. A torus link arises if p and q are not coprime. A torus knot is trivial if and only if either p or q is equal to 1 or −1. The simplest nontrivial example is the (2,3)-torus knot, also known as the trefoil knot.

<span class="mw-page-title-main">Seifert surface</span> Orientable surface whose boundary is a knot or link

In mathematics, a Seifert surface is an orientable surface whose boundary is a given knot or link.

<span class="mw-page-title-main">Fibered knot</span> Mathematical knot

In knot theory, a branch of mathematics, a knot or link in the 3-dimensional sphere is called fibered or fibred if there is a 1-parameter family of Seifert surfaces for , where the parameter runs through the points of the unit circle , such that if is not equal to then the intersection of and is exactly .

In mathematics, Khovanov homology is an oriented link invariant that arises as the cohomology of a cochain complex. It may be regarded as a categorification of the Jones polynomial.

<span class="mw-page-title-main">Hopf bifurcation</span> Critical point where a periodic solution arises

In the mathematical theory of bifurcations, a Hopfbifurcation is a critical point where, as a parameter changes, a system's stability switches and a periodic solution arises. More accurately, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues—of the linearization around the fixed point—crosses the complex plane imaginary axis as a parameter crosses a threshold value. Under reasonably generic assumptions about the dynamical system, the fixed point becomes a small-amplitude limit cycle as the parameter changes.

In algebraic geometry, a quartic plane curve is a plane algebraic curve of the fourth degree. It can be defined by a bivariate quartic equation:

<span class="mw-page-title-main">Lissajous knot</span> Knot defined by parametric equations defining Lissajous curves

In knot theory, a Lissajous knot is a knot defined by parametric equations of the form

7<sub>1</sub> knot Mathematical knot with crossing number 7

In knot theory, the 71 knot, also known as the septoil knot, the septafoil knot, or the (7, 2)-torus knot, is one of seven prime knots with crossing number seven. It is the simplest torus knot after the trefoil and cinquefoil.

<span class="mw-page-title-main">Square knot (mathematics)</span> Connected sum of two trefoil knots with opposite chirality

In knot theory, the square knot is a composite knot obtained by taking the connected sum of a trefoil knot with its reflection. It is closely related to the granny knot, which is also a connected sum of two trefoils. Because the trefoil knot is the simplest nontrivial knot, the square knot and the granny knot are the simplest of all composite knots.

<span class="mw-page-title-main">Granny knot (mathematics)</span> Connected sum of two trefoil knots with same chirality

In knot theory, the granny knot is a composite knot obtained by taking the connected sum of two identical trefoil knots. It is closely related to the square knot, which can also be described as a connected sum of two trefoils. Because the trefoil knot is the simplest nontrivial knot, the granny knot and the square knot are the simplest of all composite knots.

<span class="mw-page-title-main">Twist knot</span> Family of mathematical knots

In knot theory, a branch of mathematics, a twist knot is a knot obtained by repeatedly twisting a closed loop and then linking the ends together. The twist knots are an infinite family of knots, and are considered the simplest type of knots after the torus knots.

<span class="mw-page-title-main">Unknotting number</span> Minimum number of times a specific knot must be passed through itself to become untied

In the mathematical area of knot theory, the unknotting number of a knot is the minimum number of times the knot must be passed through itself to untie it. If a knot has unknotting number , then there exists a diagram of the knot which can be changed to unknot by switching crossings. The unknotting number of a knot is always less than half of its crossing number. This invariant was first defined by Hilmar Wendt in 1936.

References

  1. Shaw, George Russell (MCMXXXIII). Knots: Useful & Ornamental, p.11. ISBN   978-0-517-46000-9.
  2. " 3_1 ", The Knot Atlas .
  3. Weisstein, Eric W. "Trefoil Knot". MathWorld . Accessed: May 5, 2013.
  4. The Official M.C. Escher Website — Gallery — "Knots"