Seifert fiber space

Last updated

A Seifert fiber space is a 3-manifold together with a decomposition as a disjoint union of circles. In other words, it is a -bundle (circle bundle) over a 2-dimensional orbifold. Many 3-manifolds are Seifert fiber spaces, and they account for all compact oriented manifolds in 6 of the 8 Thurston geometries of the geometrization conjecture.

Contents

Definition

A standard fibered torus corresponding to (5,2) is obtained by gluing the top of the cylinder to the bottom by a 2/5 rotation counterclockwise. Bild Seiferttorus.png
A standard fibered torus corresponding to (5,2) is obtained by gluing the top of the cylinder to the bottom by a 2/5 rotation counterclockwise.

A Seifert manifold is a closed 3-manifold together with a decomposition into a disjoint union of circles (called fibers) such that each fiber has a tubular neighborhood that forms a standard fibered torus.

A standard fibered torus corresponding to a pair of coprime integers with is the surface bundle of the automorphism of a disk given by rotation by an angle of (with the natural fibering by circles). If the middle fiber is called ordinary, while if the middle fiber is called exceptional. A compact Seifert fiber space has only a finite number of exceptional fibers.

The set of fibers forms a 2-dimensional orbifold, denoted by B and called the base —also called the orbit surface— of the fibration. It has an underlying 2-dimensional surface , but may have some special orbifold points corresponding to the exceptional fibers.

The definition of Seifert fibration can be generalized in several ways. The Seifert manifold is often allowed to have a boundary (also fibered by circles, so it is a union of tori). When studying non-orientable manifolds, it is sometimes useful to allow fibers to have neighborhoods that look like the surface bundle of a reflection (rather than a rotation) of a disk, so that some fibers have neighborhoods looking like fibered Klein bottles, in which case there may be one-parameter families of exceptional curves. In both of these cases, the base B of the fibration usually has a non-empty boundary.

Classification

Herbert Seifert classified all closed Seifert fibrations in terms of the following invariants. Seifert manifolds are denoted by symbols

where: is one of the 6 symbols: , (or Oo, No, NnI, On, NnII, NnIII in Seifert's original notation) meaning:

Here

The Seifert fibration of the symbol

can be constructed from that of symbol

by using surgery to add fibers of types b and .

If we drop the normalization conditions then the symbol can be changed as follows:

Two closed Seifert oriented or non-orientable fibrations are isomorphic as oriented or non-orientable fibrations if and only if they have the same normalized symbol. However, it is sometimes possible for two Seifert manifolds to be homeomorphic even if they have different normalized symbols, because a few manifolds (such as lens spaces) can have more than one sort of Seifert fibration. Also an oriented fibration under a change of orientation becomes the Seifert fibration whose symbol has the sign of all the bs changed, which after normalization gives it the symbol

and it is homeomorphic to this as an unoriented manifold.

The sum is an invariant of oriented fibrations, which is zero if and only if the fibration becomes trivial after taking a finite cover of B.

The orbifold Euler characteristic of the orbifold B is given by

,

where is the usual Euler characteristic of the underlying topological surface of the orbifold B. The behavior of M depends largely on the sign of the orbifold Euler characteristic of B.

Fundamental group

The fundamental group of M fits into the exact sequence

where is the orbifold fundamental group of B (which is not the same as the fundamental group of the underlying topological manifold). The image of group is cyclic, normal, and generated by the element h represented by any regular fiber, but the map from π1(S1) to π1(M) is not always injective.

The fundamental group of M has the following presentation by generators and relations:

B orientable:

where ε is 1 for type o1, and is 1 for type o2.

B non-orientable:

where εi is 1 or 1 depending on whether the corresponding generator vi preserves or reverses orientation of the fiber. (So εi are all 1 for type n1, all 1 for type n2, just the first one is one for type n3, and just the first two are one for type n4.)

Positive orbifold Euler characteristic

The normalized symbols of Seifert fibrations with positive orbifold Euler characteristic are given in the list below. These Seifert manifolds often have many different Seifert fibrations. They have a spherical Thurston geometry if the fundamental group is finite, and an S2×R Thurston geometry if the fundamental group is infinite. Equivalently, the geometry is S2×R if the manifold is non-orientable or if b + Σbi/ai= 0, and spherical geometry otherwise.

{b; (o1, 0);} (b integral) is S2×S1 for b=0, otherwise a lens space L(b,1). In particular, {1; (o1, 0);} =L(1,1) is the 3-sphere.

{b; (o1, 0);(a1, b1)} (b integral) is the lens space L(ba1+b1,a1).

{b; (o1, 0);(a1, b1), (a2, b2)} (b integral) is S2×S1 if ba1a2+a1b2+a2b1 = 0, otherwise the lens space L(ba1a2+a1b2+a2b1, ma2+nb2) where ma1n(ba1 +b1) = 1.

{b; (o1, 0);(2, 1), (2, 1), (a3, b3)} (b integral) This is the prism manifold with fundamental group of order 4a3|(b+1)a3+b3| and first homology group of order 4|(b+1)a3+b3|.

{b; (o1, 0);(2, 1), (3, b2), (3, b3)} (b integral) The fundamental group is a central extension of the tetrahedral group of order 12 by a cyclic group.

{b; (o1, 0);(2, 1), (3, b2), (4, b3)} (b integral) The fundamental group is the product of a cyclic group of order |12b+6+4b2 + 3b3| and a double cover of order 48 of the octahedral group of order 24.

{b; (o1, 0);(2, 1), (3, b2), (5, b3)} (b integral) The fundamental group is the product of a cyclic group of order m=|30b+15+10b2 +6b3| and the order 120 perfect double cover of the icosahedral group. The manifolds are quotients of the Poincaré homology sphere by cyclic groups of order m. In particular, {1; (o1, 0);(2, 1), (3, 1), (5, 1)} is the Poincaré sphere.

{b; (n1, 1);} (b is 0 or 1.) These are the non-orientable 3-manifolds with S2×R geometry. If b is even this is homeomorphic to the projective plane times the circle, otherwise it is homeomorphic to a surface bundle associated to an orientation reversing automorphism of the 2-sphere.

{b; (n1, 1);(a1, b1)} (b is 0 or 1.) These are the non-orientable 3-manifolds with S2×R geometry. If ba1+b1 is even this is homeomorphic to the projective plane times the circle, otherwise it is homeomorphic to a surface bundle associated to an orientation reversing automorphism of the 2-sphere.

{b; (n2, 1);} (b integral.) This is the prism manifold with fundamental group of order 4|b| and first homology group of order 4, except for b=0 when it is a sum of two copies of real projective space, and |b|=1 when it is the lens space with fundamental group of order 4.

{b; (n2, 1);(a1, b1)} (b integral.) This is the (unique) prism manifold with fundamental group of order 4a1|ba1 + b1| and first homology group of order 4a1.

Zero orbifold Euler characteristic

The normalized symbols of Seifert fibrations with zero orbifold Euler characteristic are given in the list below. The manifolds have Euclidean Thurston geometry if they are non-orientable or if b + Σbi/ai= 0, and nil geometry otherwise. Equivalently, the manifold has Euclidean geometry if and only if its fundamental group has an abelian group of finite index. There are 10 Euclidean manifolds, but four of them have two different Seifert fibrations. All surface bundles associated to automorphisms of the 2-torus of trace 2, 1, 0, 1, or 2 are Seifert fibrations with zero orbifold Euler characteristic (the ones for other (Anosov) automorphisms are not Seifert fiber spaces, but have sol geometry). The manifolds with nil geometry all have a unique Seifert fibration, and are characterized by their fundamental groups. The total spaces are all acyclic.

{b; (o1, 0); (3, b1), (3, b2), (3, b3)}    (b integral, bi is 1 or 2) For b + Σbi/ai= 0 this is an oriented Euclidean 2-torus bundle over the circle, and is the surface bundle associated to an order 3 (trace 1) rotation of the 2-torus.

{b; (o1, 0); (2,1), (4, b2), (4, b3)}    (b integral, bi is 1 or 3) For b + Σbi/ai= 0 this is an oriented Euclidean 2-torus bundle over the circle, and is the surface bundle associated to an order 4 (trace 0) rotation of the 2-torus.

{b; (o1, 0); (2, 1), (3, b2), (6, b3)}    (b integral, b2 is 1 or 2, b3 is 1 or 5) For b + Σbi/ai= 0 this is an oriented Euclidean 2-torus bundle over the circle, and is the surface bundle associated to an order 6 (trace 1) rotation of the 2-torus.

{b; (o1, 0); (2, 1), (2, 1), (2, 1), (2, 1)}    (b integral) These are oriented 2-torus bundles for trace 2 automorphisms of the 2-torus. For b=2 this is an oriented Euclidean 2-torus bundle over the circle (the surface bundle associated to an order 2 rotation of the 2-torus) and is homeomorphic to {0; (n2, 2);}.

{b; (o1, 1); }   (b integral) This is an oriented 2-torus bundle over the circle, given as the surface bundle associated to a trace 2 automorphism of the 2-torus. For b=0 this is Euclidean, and is the 3-torus (the surface bundle associated to the identity map of the 2-torus).

{b; (o2, 1); }   (b is 0 or 1) Two non-orientable Euclidean Klein bottle bundles over the circle. The first homology is Z+Z+Z/2Z if b=0, and Z+Z if b=1. The first is the Klein bottle times S1 and other is the surface bundle associated to a Dehn twist of the Klein bottle. They are homeomorphic to the torus bundles {b; (n1, 2);}.

{0; (n1, 1); (2, 1), (2, 1)}   Homeomorphic to the non-orientable Euclidean Klein bottle bundle {1; (n3, 2);}, with first homology Z + Z/4Z.

{b; (n1, 2); }   (b is 0 or 1) These are the non-orientable Euclidean surface bundles associated with orientation reversing order 2 automorphisms of a 2-torus with no fixed points. The first homology is Z+Z+Z/2Z if b=0, and Z+Z if b=1. They are homeomorphic to the Klein bottle bundles {b; (o2, 1);}.

{b; (n2, 1); (2, 1), (2, 1)}   (b integral) For b=1 this is oriented Euclidean.

{b; (n2, 2); }   (b integral) For b=0 this is an oriented Euclidean manifold, homeomorphic to the 2-torus bundle {2; (o1, 0); (2, 1), (2, 1), (2, 1), (2, 1)} over the cicle[ check spelling ] associated to an order 2 rotation of the 2-torus.

{b; (n3, 2); }   (b is 0 or 1) The other two non-orientable Euclidean Klein bottle bundles. The one with b = 1 is homeomorphic to {0; (n1, 1); (2, 1), (2, 1)}. The first homology is Z+Z/2Z+Z/2Z if b=0, and Z+Z/4Z if b=1. These two Klein bottle bundle are surface bundles associated to the y-homeomorphism and the product of this and the twist.

Negative orbifold Euler characteristic

This is the general case. All such Seifert fibrations are determined up to isomorphism by their fundamental group. The total spaces are aspherical (in other words all higher homotopy groups vanish). They have Thurston geometries of type the universal cover of SL2(R), unless some finite cover splits as a product, in which case they have Thurston geometries of type H2×R. This happens if the manifold is non-orientable or b + Σbi/ai= 0.

Related Research Articles

<span class="mw-page-title-main">Surface (topology)</span> Two-dimensional manifold

In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.

<span class="mw-page-title-main">Genus (mathematics)</span> Number of "holes" of a surface

In mathematics, genus has a few different, but closely related, meanings. Intuitively, the genus is the number of "holes" of a surface. A sphere has genus 0, while a torus has genus 1.

<span class="mw-page-title-main">Torus</span> Doughnut-shaped surface of revolution

In geometry, a torus is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut.

In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by .

In mathematics, a diffeology on a set generalizes the concept of smooth charts in a differentiable manifold, declaring what the "smooth parametrizations" in the set are.

<span class="mw-page-title-main">Orientability</span> Possibility of a consistent definition of "clockwise" in a mathematical space

In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "anticlockwise". A space is orientable if such a consistent definition exists. In this case, there are two possible definitions, and a choice between them is an orientation of the space. Real vector spaces, Euclidean spaces, and spheres are orientable. A space is non-orientable if "clockwise" is changed into "counterclockwise" after running through some loops in it, and coming back to the starting point. This means that a geometric shape, such as , that moves continuously along such a loop is changed into its own mirror image . A Möbius strip is an example of a non-orientable space.

In mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries . In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the geometrization conjecture states that every closed 3-manifold can be decomposed in a canonical way into pieces that each have one of eight types of geometric structure. The conjecture was proposed by William Thurston (1982), and implies several other conjectures, such as the Poincaré conjecture and Thurston's elliptization conjecture.

<span class="mw-page-title-main">Fiber bundle</span> Continuous surjection satisfying a local triviality condition

In mathematics, and particularly topology, a fiber bundle is a space that is locally a product space, but globally may have a different topological structure. Specifically, the similarity between a space and a product space is defined using a continuous surjective map, that in small regions of behaves just like a projection from corresponding regions of to The map called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space is known as the total space of the fiber bundle, as the base space, and the fiber.

In the mathematical disciplines of topology and geometry, an orbifold is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space.

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product of a space with a group . In the same way as with the Cartesian product, a principal bundle is equipped with

  1. An action of on , analogous to for a product space.
  2. A projection onto . For a product space, this is just the projection onto the first factor, .
<span class="mw-page-title-main">Foliation</span> In mathematics, a type of equivalence relation on an n-manifold

In mathematics, a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable, or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1. The number p is called the dimension of the foliation and q = np is called its codimension.

In algebraic topology, a homology sphere is an n-manifold X having the homology groups of an n-sphere, for some integer . That is,

<span class="mw-page-title-main">3-manifold</span> Mathematical space

In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.

In mathematics, a spherical 3-manifoldM is a 3-manifold of the form

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

In differential geometry, in the category of differentiable manifolds, a fibered manifold is a surjective submersion

In mathematics, a Riemannian manifold is said to be flat if its Riemann curvature tensor is everywhere zero. Intuitively, a flat manifold is one that "locally looks like" Euclidean space in terms of distances and angles, e.g. the interior angles of a triangle add up to 180°.

This is a glossary of properties and concepts in algebraic topology in mathematics.

References