This article includes a list of general references, but it remains largely unverified because it lacks sufficient corresponding inline citations .(May 2013) |
Involutional symmetry Cs, (*) [ ] = | Cyclic symmetry Cnv, (*nn) [n] = | Dihedral symmetry Dnh, (*n22) [n,2] = | |
Polyhedral group, [n,3], (*n32) | |||
---|---|---|---|
Tetrahedral symmetry Td, (*332) [3,3] = | Octahedral symmetry Oh, (*432) [4,3] = | Icosahedral symmetry Ih, (*532) [5,3] = |
A regular octahedron has 24 rotational (or orientation-preserving) symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedron that is dual to an octahedron.
The group of orientation-preserving symmetries is S4, the symmetric group or the group of permutations of four objects, since there is exactly one such symmetry for each permutation of the four diagonals of the cube.
Chiral and full (or achiral) octahedral symmetry are the discrete point symmetries (or equivalently, symmetries on the sphere) with the largest symmetry groups compatible with translational symmetry. They are among the crystallographic point groups of the cubic crystal system.
Elements of O | Inversions of elements of O | ||
---|---|---|---|
identity | 0 | inversion | 0' |
3 × rotation by 180° about a 4-fold axis | 7, 16, 23 | 3 × reflection in a plane perpendicular to a 4-fold axis | 7', 16', 23' |
8 × rotation by 120° about a 3-fold axis | 3, 4, 8, 11, 12, 15, 19, 20 | 8 × rotoreflection by 60° | 3', 4', 8', 11', 12', 15', 19', 20' |
6 × rotation by 180° about a 2-fold axis | 1', 2', 5', 6', 14', 21' | 6 × reflection in a plane perpendicular to a 2-fold axis | 1, 2, 5, 6, 14, 21 |
6 × rotation by 90° about a 4-fold axis | 9', 10', 13', 17', 18', 22' | 6 × rotoreflection by 90° | 9, 10, 13, 17, 18, 22 |
Examples | ||||
---|---|---|---|---|
| | | | |
| | | | |
A complete list can be found in the Wikiversity article. |
As the hyperoctahedral group of dimension 3 the full octahedral group is the wreath product ,
and a natural way to identify its elements is as pairs with and .
But as it is also the direct product , one can simply identify the elements of tetrahedral subgroup Td as and their inversions as .
So e.g. the identity is represented as and the inversion as .
is represented as and as .
A rotoreflection is a combination of rotation and reflection.
Illustration of rotoreflections | ||||
---|---|---|---|---|
Gyration axes | ||
---|---|---|
C4 | C3 | C2 |
3 | 4 | 6 |
O, 432, or [4,3]+ of order 24, is chiral octahedral symmetry or rotational octahedral symmetry . This group is like chiral tetrahedral symmetry T, but the C2 axes are now C4 axes, and additionally there are 6 C2 axes, through the midpoints of the edges of the cube. Td and O are isomorphic as abstract groups: they both correspond to S4, the symmetric group on 4 objects. Td is the union of T and the set obtained by combining each element of O \ T with inversion. O is the rotation group of the cube and the regular octahedron.
Orthogonal projection | Stereographic projection | ||
---|---|---|---|
2-fold | 4-fold | 3-fold | 2-fold |
Oh, *432, [4,3], or m3m of order 48 - achiral octahedral symmetry or full octahedral symmetry. This group has the same rotation axes as O, but with mirror planes, comprising both the mirror planes of Td and Th. This group is isomorphic to S4.C2, and is the full symmetry group of the cube and octahedron. It is the hyperoctahedral group for n = 3. See also the isometries of the cube.
With the 4-fold axes as coordinate axes, a fundamental domain of Oh is given by 0 ≤ x ≤ y ≤ z. An object with this symmetry is characterized by the part of the object in the fundamental domain, for example the cube is given by z = 1, and the octahedron by x + y + z = 1 (or the corresponding inequalities, to get the solid instead of the surface). ax + by + cz = 1 gives a polyhedron with 48 faces, e.g. the disdyakis dodecahedron.
Faces are 8-by-8 combined to larger faces for a = b = 0 (cube) and 6-by-6 for a = b = c (octahedron).
The 9 mirror lines of full octahedral symmetry can be divided into two subgroups of 3 and 6 (drawn in purple and red), representing in two orthogonal subsymmetries: D2h, and Td. D2h symmetry can be doubled to D4h by restoring 2 mirrors from one of three orientations.
Octahedral symmetry and reflective subgroups | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Take the set of all 3×3 permutation matrices and assign a + or − sign to each of the three 1s. There are permutations and sign combinations for a total of 48 matrices, giving the full octahedral group. 24 of these matrices have a determinant of +1; these are the rotation matrices of the chiral octahedral group. The other 24 matrices have a determinant of −1 and correspond to a reflection or inversion.
Three reflectional generator matices are needed for octahedral symmetry, which represent the three mirrors of a Coxeter-Dynkin diagram. The product of the reflections produce 3 rotational generators.
Reflections | Rotations | Rotoreflection | |||||
---|---|---|---|---|---|---|---|
Generators | R0 | R1 | R2 | R0R1 | R1R2 | R0R2 | R0R1R2 |
Group | |||||||
Order | 2 | 2 | 2 | 4 | 3 | 2 | 6 |
Matrix |
Schoe. | Coxeter | Orb. | H-M | Structure | Cyc. | Order | Index | |
---|---|---|---|---|---|---|---|---|
Oh | [4,3] | *432 | m3m | S4×S2 | 48 | 1 | ||
Td | [3,3] | *332 | 43m | S4 | 24 | 2 | ||
D4h | [2,4] | *224 | 4/mmm | D2×D8 | 16 | 3 | ||
D2h | [2,2] | *222 | mmm | D23=D2×D4 | 8 | 6 | ||
C4v | [4] | *44 | 4mm | D8 | 8 | 6 | ||
C3v | [3] | *33 | 3m | D6=S3 | 6 | 8 | ||
C2v | [2] | *22 | mm2 | D22=D4 | 4 | 12 | ||
Cs=C1v | [ ] | * | 2 or m | D2 | 2 | 24 | ||
Th | [3+,4] | 3*2 | m3 | A4×S2 | 24 | 2 | ||
C4h | [4+,2] | 4* | 4/m | Z4×D2 | 8 | 6 | ||
D3d | [2+,6] | 2*3 | 3m | D12=Z2×D6 | 12 | 4 | ||
D2d | [2+,4] | 2*2 | 42m | D8 | 8 | 6 | ||
C2h = D1d | [2+,2] | 2* | 2/m | Z2×D2 | 4 | 12 | ||
S6 | [2+,6+] | 3× | 3 | Z6=Z2×Z3 | 6 | 8 | ||
S4 | [2+,4+] | 2× | 4 | Z4 | 4 | 12 | ||
S2 | [2+,2+] | × | 1 | S2 | 2 | 24 | ||
O | [4,3]+ | 432 | 432 | S4 | 24 | 2 | ||
T | [3,3]+ | 332 | 23 | A4 | 12 | 4 | ||
D4 | [2,4]+ | 224 | 422 | D8 | 8 | 6 | ||
D3 | [2,3]+ | 223 | 322 | D6=S3 | 6 | 8 | ||
D2 | [2,2]+ | 222 | 222 | D4=Z22 | 4 | 12 | ||
C4 | [4]+ | 44 | 4 | Z4 | 4 | 12 | ||
C3 | [3]+ | 33 | 3 | Z3=A3 | 3 | 16 | ||
C2 | [2]+ | 22 | 2 | Z2 | 2 | 24 | ||
C1 | [ ]+ | 11 | 1 | Z1 | 1 | 48 |
Octahedral subgroups in Coxeter notation [1] |
The cube has 48 isometries (symmetry elements), forming the symmetry group Oh, isomorphic to S4 × Z2. They can be categorized as follows:
An isometry of the cube can be identified in various ways:
For cubes with colors or markings (like dice have), the symmetry group is a subgroup of Oh.
Examples:
For some larger subgroups a cube with that group as symmetry group is not possible with just coloring whole faces. One has to draw some pattern on the faces.
Examples:
The full symmetry of the cube, Oh, [4,3], (*432), is preserved if and only if all faces have the same pattern such that the full symmetry of the square is preserved, with for the square a symmetry group, Dih4, [4], of order 8.
The full symmetry of the cube under proper rotations, O, [4,3]+, (432), is preserved if and only if all faces have the same pattern with 4-fold rotational symmetry, Z4, [4]+.
In Riemann surface theory, the Bolza surface, sometimes called the Bolza curve, is obtained as the ramified double cover of the Riemann sphere, with ramification locus at the set of vertices of the regular inscribed octahedron. Its automorphism group includes the hyperelliptic involution which flips the two sheets of the cover. The quotient by the order 2 subgroup generated by the hyperelliptic involution yields precisely the group of symmetries of the octahedron. Among the many remarkable properties of the Bolza surface is the fact that it maximizes the systole among all genus 2 hyperbolic surfaces.
Class | Name | Picture | Faces | Edges | Vertices | Dual name | Picture |
---|---|---|---|---|---|---|---|
Archimedean solid (Catalan solid) | snub cube | 38 | 60 | 24 | pentagonal icositetrahedron |
Class | Name | Picture | Faces | Edges | Vertices | Dual name | Picture |
---|---|---|---|---|---|---|---|
Platonic solid | Cube | 6 | 12 | 8 | Octahedron | ||
Archimedean solid (dual Catalan solid) | Cuboctahedron | 14 | 24 | 12 | Rhombic dodecahedron | ||
Truncated cube | 14 | 36 | 24 | Triakis octahedron | |||
Truncated octahedron | 14 | 36 | 24 | Tetrakis hexahedron | |||
Rhombicuboctahedron | 26 | 48 | 24 | Deltoidal icositetrahedron | |||
Truncated cuboctahedron | 26 | 72 | 48 | Disdyakis dodecahedron | |||
Regular compound polyhedron | Stella octangula | 8 | 12 | 8 | Self-dual | ||
Cube and octahedron | 14 | 24 | 14 | Self-dual |
A (symmetric) n-gonal bipyramid or dipyramid is a polyhedron formed by joining an n-gonal pyramid and its mirror image base-to-base. An n-gonal bipyramid has 2n triangle faces, 3n edges, and 2 + n vertices.
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex.
In geometry, an octahedron is a polyhedron with eight faces, twelve edges, and six vertices. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym(X).
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry.
In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces, 36 edges, and 24 vertices. Since each of its faces has point symmetry the truncated octahedron is a zonohedron. It is also the Goldberg polyhedron GIV(1,1), containing square and hexagonal faces. Like the cube, it can tessellate 3-dimensional space, as a permutohedron.
In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.
In geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.
In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron.
In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space ; that is, the transformations of that space that preserve the Euclidean distance between any two points. The group depends only on the dimension n of the space, and is commonly denoted E(n) or ISO(n).
In crystallography, a crystallographic point group is a set of symmetry operations, corresponding to one of the point groups in three dimensions, such that each operation would leave the structure of a crystal unchanged i.e. the same kinds of atoms would be placed in similar positions as before the transformation. For example, in many crystals in the cubic crystal system, a rotation of the unit cell by 90 degree around an axis that is perpendicular to one of the faces of the cube is a symmetry operation that moves each atom to the location of another atom of the same kind, leaving the overall structure of the crystal unaffected.
Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation.
In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,4}. It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. It is also called C16, hexadecachoron, or hexdecahedroid.
The Schoenfliesnotation, named after the German mathematician Arthur Moritz Schoenflies, is a notation primarily used to specify point groups in three dimensions. Because a point group alone is completely adequate to describe the symmetry of a molecule, the notation is often sufficient and commonly used for spectroscopy. However, in crystallography, there is additional translational symmetry, and point groups are not enough to describe the full symmetry of crystals, so the full space group is usually used instead. The naming of full space groups usually follows another common convention, the Hermann–Mauguin notation, also known as the international notation.
In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.
A regular tetrahedron has 12 rotational symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation.
In geometry, Hermann–Mauguin notation is used to represent the symmetry elements in point groups, plane groups and space groups. It is named after the German crystallographer Carl Hermann and the French mineralogist Charles-Victor Mauguin. This notation is sometimes called international notation, because it was adopted as standard by the International Tables For Crystallography since their first edition in 1935.
Molecular symmetry in chemistry describes the symmetry present in molecules and the classification of these molecules according to their symmetry. Molecular symmetry is a fundamental concept in chemistry, as it can be used to predict or explain many of a molecule's chemical properties, such as its dipole moment and its allowed spectroscopic transitions. To do this it is necessary to classify the states of the molecule using the irreducible representations from the character table of the symmetry group of the molecule. Many university level textbooks on physical chemistry, quantum chemistry, spectroscopy and inorganic chemistry devote a chapter to symmetry.
In geometry, a point reflection or inversion in a point is a type of isometry of Euclidean space. An object that is invariant under a point reflection is said to possess point symmetry; if it is invariant under point reflection through its center, it is said to possess central symmetry or to be centrally symmetric.
In geometry, the polyhedral group is any of the symmetry groups of the Platonic solids.