List of small groups

Last updated

The following list in mathematics contains the finite groups of small order up to group isomorphism.

Contents

Counts

For n = 1, 2, … the number of nonisomorphic groups of order n is

1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, ... (sequence A000001 in the OEIS )

For labeled groups, see OEIS:  A034383 .

Glossary

Each group is named by Small Groups library as Goi, where o is the order of the group, and i is the index used to label the group within that order.

Common group names:

The notations Zn and Dihn have the advantage that point groups in three dimensions Cn and Dn do not have the same notation. There are more isometry groups than these two, of the same abstract group type.

The notation G × H denotes the direct product of the two groups; Gn denotes the direct product of a group with itself n times. GH denotes a semidirect product where H acts on G; this may also depend on the choice of action of H on G.

Abelian and simple groups are noted. (For groups of order n < 60, the simple groups are precisely the cyclic groups Zn, for prime n.) The equality sign ("=") denotes isomorphism.

The identity element in the cycle graphs is represented by the black circle. The lowest order for which the cycle graph does not uniquely represent a group is order 16.

In the lists of subgroups, the trivial group and the group itself are not listed. Where there are several isomorphic subgroups, the number of such subgroups is indicated in parentheses.

Angle brackets <relations> show the presentation of a group.

List of small abelian groups

The finite abelian groups are either cyclic groups, or direct products thereof; see Abelian group. The numbers of nonisomorphic abelian groups of orders n = 1, 2, ... are

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, ... (sequence A000688 in the OEIS )

For labeled abelian groups, see OEIS:  A034382 .

List of all abelian groups up to order 31
OrderId. [a] GoiGroupNon-trivial proper subgroups [1] Cycle
graph
Properties
11G11Z1 = S1 = A2 GroupDiagramMiniC1.svg Trivial. Cyclic. Alternating. Symmetric. Elementary.
22G21Z2 = S2 = D2 GroupDiagramMiniC2.svg Simple. Symmetric. Cyclic. Elementary. (Smallest non-trivial group.)
33G31Z3 = A3 GroupDiagramMiniC3.svg Simple. Alternating. Cyclic. Elementary.
44G41Z4 = Q4Z2 GroupDiagramMiniC4.svg Cyclic.
5G42Z22 = K4 = D4Z2 (3) GroupDiagramMiniD4.svg Elementary. Product. (Klein four-group. The smallest non-cyclic group.)
56G51Z5 GroupDiagramMiniC5.svg Simple. Cyclic. Elementary.
68G62Z6 = Z3 × Z2 [2] Z3, Z2 GroupDiagramMiniC6.svg Cyclic. Product.
79G71Z7 GroupDiagramMiniC7.svg Simple. Cyclic. Elementary.
810G81Z8Z4, Z2 GroupDiagramMiniC8.svg Cyclic.
11G82Z4 × Z2Z22, Z4 (2), Z2 (3) GroupDiagramMiniC2C4.svg Product.
14G85Z23Z22 (7), Z2 (7) GroupDiagramMiniC2x3.svg Product. Elementary. (The non-identity elements correspond to the points in the Fano plane, the Z2 × Z2 subgroups to the lines.)
915G91Z9Z3 GroupDiagramMiniC9.svg Cyclic.
16G92Z32Z3 (4) GroupDiagramMiniC3x2.svg Elementary. Product.
1018G102Z10 = Z5 × Z2Z5, Z2 GroupDiagramMiniC10.svg Cyclic. Product.
1119G111Z11 GroupDiagramMiniC11.svg Simple. Cyclic. Elementary.
1221G122Z12 = Z4 × Z3Z6, Z4, Z3, Z2 GroupDiagramMiniC12.svg Cyclic. Product.
24G125Z6 × Z2 = Z3 × Z22Z6 (3), Z3, Z2 (3), Z22 GroupDiagramMiniC2C6.svg Product.
1325G131Z13 GroupDiagramMiniC13.svg Simple. Cyclic. Elementary.
1427G142Z14 = Z7 × Z2Z7, Z2 GroupDiagramMiniC14.svg Cyclic. Product.
1528G151Z15 = Z5 × Z3Z5, Z3 GroupDiagramMiniC15.svg Cyclic. Product.
1629G161Z16Z8, Z4, Z2 GroupDiagramMiniC16.svg Cyclic.
30G162Z42 Z2 (3), Z4 (6), Z22, Z4 × Z2 (3) GroupDiagramMiniC4x2.svg Product.
33G165Z8 × Z2Z2 (3), Z4 (2), Z22, Z8 (2), Z4 × Z2 GroupDiagramC2C8.svg Product.
38G1610Z4 × Z22Z2 (7), Z4 (4), Z22 (7), Z23, Z4 × Z2 (6) GroupDiagramMiniC2x2C4.svg Product.
42G1614Z24 = K42 Z2 (15), Z22 (35), Z23 (15) GroupDiagramMiniC2x4.svg Product. Elementary.
1743G171Z17 GroupDiagramMiniC17.svg Simple. Cyclic. Elementary.
1845G182Z18 = Z9 × Z2Z9, Z6, Z3, Z2 GroupDiagramMiniC18.svg Cyclic. Product.
48G185Z6 × Z3 = Z32 × Z2Z2, Z3 (4), Z6 (4), Z32 GroupDiagramMiniC3C6.png Product.
1949G191Z19 GroupDiagramMiniC19.svg Simple. Cyclic. Elementary.
2051G202Z20 = Z5 × Z4Z10, Z5, Z4, Z2 GroupDiagramMiniC20.svg Cyclic. Product.
54G205Z10 × Z2 = Z5 × Z22Z2 (3), K4, Z5, Z10 (3) GroupDiagramMiniC2C10.png Product.
2156G212Z21 = Z7 × Z3Z7, Z3 GroupDiagramMiniC21.svg Cyclic. Product.
2258G222Z22 = Z11 × Z2Z11, Z2 GroupDiagramMiniC22.svg Cyclic. Product.
2359G231Z23 GroupDiagramMiniC23.svg Simple. Cyclic. Elementary.
2461G242Z24 = Z8 × Z3Z12, Z8, Z6, Z4, Z3, Z2 GroupDiagramMiniC24.svg Cyclic. Product.
68G249Z12 × Z2 = Z6 × Z4 =
Z4 × Z3 × Z2
Z12, Z6, Z4, Z3, Z2Product.
74G2415Z6 × Z22 = Z3 × Z23Z6, Z3, Z2Product.
2575G251Z25Z5Cyclic.
76G252Z52Z5 (6)Product. Elementary.
2678G262Z26 = Z13 × Z2Z13, Z2Cyclic. Product.
2779G271Z27Z9, Z3Cyclic.
80G272Z9 × Z3Z9, Z3Product.
83G275Z33Z3Product. Elementary.
2885G282Z28 = Z7 × Z4Z14, Z7, Z4, Z2Cyclic. Product.
87G284Z14 × Z2 = Z7 × Z22Z14, Z7, Z4, Z2Product.
2988G291Z29Simple. Cyclic. Elementary.
3092G304Z30 = Z15 × Z2 = Z10 × Z3 =
Z6 × Z5 = Z5 × Z3 × Z2
Z15, Z10, Z6, Z5, Z3, Z2Cyclic. Product.
3193G311Z31Simple. Cyclic. Elementary.

List of small non-abelian groups

The numbers of non-abelian groups, by order, are counted by (sequence A060689 in the OEIS ). However, many orders have no non-abelian groups. The orders for which a non-abelian group exists are

6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 39, 40, 42, 44, 46, 48, 50, ... (sequence A060652 in the OEIS )
List of all nonabelian groups up to order 31
OrderId. [a] GoiGroupNon-trivial proper subgroups [1] Cycle
graph
Properties
67G61D6 = S3 = Z3 ⋊ Z2Z3, Z2 (3) GroupDiagramMiniD6.svg Dihedral group, Dih3, the smallest non-abelian group, symmetric group, smallest Frobenius group.
812G83D8Z4, Z22 (2), Z2 (5) GroupDiagramMiniD8.svg Dihedral group, Dih4. Extraspecial group. Nilpotent.
13G84Q8Z4 (3), Z2 GroupDiagramMiniQ8.svg Quaternion group, Hamiltonian group (all subgroups are normal without the group being abelian). The smallest group G demonstrating that for a normal subgroup H the quotient group G/H need not be isomorphic to a subgroup of G. Extraspecial group. Dic2, [3] Binary dihedral group <2,2,2>. [4] Nilpotent.
1017G101D10Z5, Z2 (5) GroupDiagramMiniD10.svg Dihedral group, Dih5, Frobenius group.
1220G121Q12 = Z3 ⋊ Z4Z2, Z3, Z4 (3), Z6 GroupDiagramMiniX12.svg Dicyclic group Dic3, Binary dihedral group, <3,2,2>. [4]
22G123A4 = K4 ⋊ Z3 = (Z2 × Z2) ⋊ Z3Z22, Z3 (4), Z2 (3) GroupDiagramMiniA4.svg Alternating group. No subgroups of order 6, although 6 divides its order. Smallest Frobenius group that is not a dihedral group.
Chiral tetrahedral symmetry (T).
23G124D12 = D6 × Z2Z6, D6 (2), Z22 (3), Z3, Z2 (7) GroupDiagramMiniD12.svg Dihedral group, Dih6, product.
1426G141D14Z7, Z2 (7) GroupDiagramMiniD14.svg Dihedral group, Dih7, Frobenius group.
16 [5] 31G163K4 ⋊ Z4Z23, Z4 × Z2 (2), Z4 (4), Z22 (7), Z2 (7) GroupDiagramMiniG44.svg Has the same number of elements of every order as the Pauli group. Nilpotent.
32G164Z4 ⋊ Z4Z4 × Z2 (3), Z4 (6), Z22, Z2 (3) GroupDiagramMinix3.svg The squares of elements do not form a subgroup. Has the same number of elements of every order as Q8 × Z2. Nilpotent.
34G166Z8 ⋊ Z2Z8 (2), Z4 × Z2, Z4 (2), Z22, Z2 (3) GroupDiagramMOD16.svg Sometimes called the modular group of order 16, though this is misleading as abelian groups and Q8 × Z2 are also modular. Nilpotent.
35G167D16Z8, D8 (2), Z22 (4), Z4, Z2 (9) GroupDiagramMiniD16.svg Dihedral group, Dih8. Nilpotent.
36G168QD16Z8, Q8, D8, Z4 (3), Z22 (2), Z2 (5) GroupDiagramMiniQH16.svg The order 16 quasidihedral group. Nilpotent.
37G169Q16Z8, Q8 (2), Z4 (5), Z2 GroupDiagramMiniQ16.svg Generalized quaternion group, Dicyclic group Dic4, binary dihedral group, <4,2,2>. [4] Nilpotent.
39G1611D8 × Z2D8 (4), Z4 × Z2, Z23 (2), Z22 (13), Z4 (2), Z2 (11) GroupDiagramMiniC2D8.svg Product. Nilpotent.
40G1612Q8 × Z2Q8 (4), Z4 × Z2 (3), Z4 (6), Z22, Z2 (3) GroupDiagramMiniC2Q8.svg Hamiltonian group, product. Nilpotent.
41G1613(Z4 × Z2) ⋊ Z2Q8, D8 (3), Z4 × Z2 (3), Z4 (4), Z22 (3), Z2 (7) GroupDiagramMiniC2x2C4.svg The Pauli group generated by the Pauli matrices. Nilpotent.
1844G181D18Z9, D6 (3), Z3, Z2 (9) GroupDiagramMiniD18.png Dihedral group, Dih9, Frobenius group.
46G183Z3 ⋊ Z6 = D6 × Z3 = S3 × Z3Z32, D6, Z6 (3), Z3 (4), Z2 (3) GroupDiagramMiniC3D6.png Product.
47G184(Z3 × Z3) ⋊ Z2Z32, D6 (12), Z3 (4), Z2 (9) GroupDiagramMiniG18-4.png Frobenius group.
2050G201Q20Z10, Z5, Z4 (5), Z2 GroupDiagramMiniQ20.png Dicyclic group Dic5, Binary dihedral group, <5,2,2>. [4]
52G203Z5 ⋊ Z4D10, Z5, Z4 (5), Z2 (5) GroupDiagramMiniC5semiprodC4.png Frobenius group.
53G204D20 = D10 × Z2Z10, D10 (2), Z5, Z22 (5), Z2 (11) GroupDiagramMiniD20.png Dihedral group, Dih10, product.
2155G211Z7 ⋊ Z3Z7, Z3 (7) Frob21 cycle graph.svg Smallest non-abelian group of odd order. Frobenius group.
2257G221D22Z11, Z2 (11)Dihedral group Dih11, Frobenius group.
2460G241Z3 ⋊ Z8Z12, Z8 (3), Z6, Z4, Z3, Z2 Cycle graph Z3xiZ8.svg Central extension of S3.
62G243 SL(2,3) = Q8 ⋊ Z3Q8, Z6 (4), Z4 (3), Z3 (4), Z2 SL(2,3); Cycle graph.svg Binary tetrahedral group, 2T = <3,3,2>. [4]
63G244Q24 = Z3 ⋊ Q8Z12, Q12 (2), Q8 (3), Z6, Z4 (7), Z3, Z2 GroupDiagramMiniQ24.png Dicyclic group Dic6, Binary dihedral, <6,2,2>. [4]
64G245D6 × Z4 = S3 × Z4Z12, D12, Q12, Z4 × Z2 (3), Z6, D6 (2), Z4 (4), Z22 (3), Z3, Z2 (7)Product.
65G246D24Z12, D12 (2), D8 (3), Z6, D6 (4), Z4, Z22 (6), Z3, Z2 (13)Dihedral group, Dih12.
66G247Q12 × Z2 = Z2 × (Z3 ⋊ Z4)Z6 × Z2, Q12 (2), Z4 × Z2 (3), Z6 (3), Z4 (6), Z22, Z3, Z2 (3)Product.
67G248(Z6 × Z2) ⋊ Z2 = Z3 ⋊ D8Z6 × Z2, D12, Q12, D8 (3), Z6 (3), D6 (2), Z4 (3), Z22 (4), Z3, Z2 (9)Double cover of dihedral group.
69G2410D8 × Z3Z12, Z6 × Z2 (2), D8, Z6 (5), Z4, Z22 (2), Z3, Z2 (5)Product. Nilpotent.
70G2411Q8 × Z3Z12 (3), Q8, Z6, Z4 (3), Z3, Z2Product. Nilpotent.
71G2412S4A4, D8 (3), D6 (4), Z4 (3), Z22 (4), Z3 (4), Z2 (9) [6] Symmetric group 4; cycle graph.svg Symmetric group. Has no normal Sylow subgroups. Chiral octahedral symmetry (O), Achiral tetrahedral symmetry (Td).
72G2413A4 × Z2A4, Z23, Z6 (4), Z22 (7), Z3 (4), Z2 (7) GroupDiagramMiniA4xC2.png Product. Pyritohedral symmetry (Th).
73G2414D12 × Z2Z6 × Z2, D12 (6), Z23 (3), Z6 (3), D6 (4), Z22 (19), Z3, Z2 (15)Product.
2677G261D26Z13, Z2 (13)Dihedral group, Dih13, Frobenius group.
2781G273Z32 ⋊ Z3Z32 (4), Z3 (13)All non-trivial elements have order 3. Extraspecial group. Nilpotent.
82G274Z9 ⋊ Z3Z9 (3), Z32, Z3 (4) Extraspecial group. Nilpotent.
2884G281Z7 ⋊ Z4Z14, Z7, Z4 (7), Z2Dicyclic group Dic7, Binary dihedral group, <7,2,2>. [4]
86G283D28 = D14 × Z2Z14, D14 (2), Z7, Z22 (7), Z2 (9)Dihedral group, Dih14, product.
3089G301D6 × Z5Z15, Z10 (3), D6, Z5, Z3, Z2 (3)Product.
90G302D10 × Z3Z15, D10, Z6 (5), Z5, Z3, Z2 (5)Product.
91G303D30Z15, D10 (3), D6 (5), Z5, Z3, Z2 (15)Dihedral group, Dih15, Frobenius group.

Classifying groups of small order

Small groups of prime power order pn are given as follows:

Most groups of small order have a Sylow p subgroup P with a normal p-complement N for some prime p dividing the order, so can be classified in terms of the possible primes p, p-groups P, groups N, and actions of P on N. In some sense this reduces the classification of these groups to the classification of p-groups. Some of the small groups that do not have a normal p-complement include:

The smallest order for which it is not known how many nonisomorphic groups there are is 2048 = 211. [7]

Small Groups Library

The GAP computer algebra system contains a package called the "Small Groups library," which provides access to descriptions of small order groups. The groups are listed up to isomorphism. At present, the library contains the following groups: [8]

It contains explicit descriptions of the available groups in computer readable format.

The smallest order for which the Small Groups library does not have information is 1024.

See also

Notes

  1. 1 2 Identifier when groups are numbered by order, o, then by index, i, from the small groups library, starting at 1.
  1. 1 2 Dockchitser, Tim. "Group Names" . Retrieved 23 May 2023.
  2. See a worked example showing the isomorphism Z6 = Z3 × Z2.
  3. Chen, Jing; Tang, Lang (2020). "The Commuting Graphs on Dicyclic Groups". Algebra Colloquium. 27 (4): 799–806. doi:10.1142/S1005386720000668. ISSN   1005-3867. S2CID   228827501.
  4. 1 2 3 4 5 6 7 Coxeter, H. S. M. (1957). Generators and relations for discrete groups. Berlin: Springer. doi:10.1007/978-3-662-25739-5. ISBN   978-3-662-23654-3. <l,m,n>: Rl=Sm=Tn=RST{{cite book}}: ISBN / Date incompatibility (help):
  5. Wild, Marcel (2005). "The Groups of Order Sixteen Made Easy" (PDF). Am. Math. Mon. 112 (1): 20–31. doi:10.1080/00029890.2005.11920164. JSTOR   30037381. S2CID   15362871. Archived from the original (PDF) on 2006-09-23.
  6. "Subgroup structure of symmetric group:S4 - Groupprops".
  7. Eick, Bettina; Horn, Max; Hulpke, Alexander (2018). Constructing groups of Small Order: Recent results and open problems (PDF). Springer. pp. 199–211. doi:10.1007/978-3-319-70566-8_8. ISBN   978-3-319-70566-8.
  8. Hans Ulrich Besche The Small Groups library Archived 2012-03-05 at the Wayback Machine
  9. "Numbers of isomorphism types of finite groups of given order". www.icm.tu-bs.de. Archived from the original on 2019-07-25. Retrieved 2017-04-05.
  10. Burrell, David (2021-12-08). "On the number of groups of order 1024" . Communications in Algebra. 50 (6): 2408–2410. doi:10.1080/00927872.2021.2006680.

References