Compound of cube and octahedron

Last updated
Compound of cube and octahedron
Compound of cube and octahedron.png
Type Compound
Coxeter diagram CDel nodes 10ru.pngCDel split2-43.pngCDel node.pngCDel nodes 01rd.pngCDel split2-43.pngCDel node.png
Stellation core cuboctahedron
Convex hull Rhombic dodecahedron
IndexW43
Polyhedra1 octahedron
1 cube
Faces8 triangles
6 squares
Edges24
Vertices14
Symmetry group octahedral (Oh)
Model of a cube octahedron compound carved from wood Stellated cuboctahedron1.jpg
Model of a cube octahedron compound carved from wood

The compound of cube and octahedron is a polyhedron which can be seen as either a polyhedral stellation or a compound.

Contents

Construction

The 14 Cartesian coordinates of the vertices of the compound are.

6: (±2, 0, 0), ( 0, ±2, 0), ( 0, 0, ±2)
8: ( ±1, ±1, ±1)

As a compound

It can be seen as the compound of an octahedron and a cube. It is one of four compounds constructed from a Platonic solid or Kepler-Poinsot polyhedron and its dual.

It has octahedral symmetry (Oh) and shares the same vertices as a rhombic dodecahedron.

This can be seen as the three-dimensional equivalent of the compound of two squares ({8/2} "octagram"); this series continues on to infinity, with the four-dimensional equivalent being the compound of tesseract and 16-cell.

Polyhedron 6 unchamfered.svg
Polyhedron 8.png
A cube and its dual octahedron
Polyhedron 6-8 blue.png
Polyhedron 6-8 dual blue.png
The intersection of both solids is the cuboctahedron, and their convex hull is the rhombic dodecahedron.
Polyhedron pair 6-8 from blue.png
Polyhedron pair 6-8 from yellow.png
Polyhedron pair 6-8 from red.png
Seen from 2-fold, 3-fold and 4-fold symmetry axes
The hexagon in the middle is the Petrie polygon of both solids.
Polyhedron pair 6-8.png
Polyhedron small rhombi 6-8 dual max.png
If the edge crossings were vertices, the mapping on a sphere would be the same as that of a deltoidal icositetrahedron.

As a stellation

It is also the first stellation of the cuboctahedron and given as Wenninger model index 43.

It can be seen as a cuboctahedron with square and triangular pyramids added to each face.

The stellation facets for construction are:

First stellation of cuboctahedron trifacets.png First stellation of cuboctahedron square facets.png

See also

Related Research Articles

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Kepler–Poinsot polyhedron</span> Any of 4 regular star polyhedra

In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra.

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

<span class="mw-page-title-main">Stellation</span> Extending the elements of a polytope to form a new figure

In geometry, stellation is the process of extending a polygon in two dimensions, a polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from the Latin stella, "star". Stellation is the reciprocal or dual process to faceting.

<span class="mw-page-title-main">Rhombic dodecahedron</span> Catalan solid with 12 faces

In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb. There are some variations of the rhombic dodecahedron, one of which is the Bilinski dodecahedron. There are some stellations of the rhombic dodecahedron, one of which is the Escher's solid. The rhombic dodecahedron may also appearances in the garnet crystal, the architectural philosophies, practical usages, and toys.

<span class="mw-page-title-main">Rhombic triacontahedron</span> Catalan solid with 30 faces

The rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catalan solid, and the dual polyhedron of the icosidodecahedron. It is a zonohedron.

<span class="mw-page-title-main">Great dodecahedron</span> Kepler-Poinsot polyhedron

In geometry, the great dodecahedron is one of four Kepler–Poinsot polyhedrons. It is composed of 12 pentagonal faces, intersecting each other making a pentagrammic path, with five pentagons meeting at each vertex.

<span class="mw-page-title-main">Final stellation of the icosahedron</span> Outermost stellation of the icosahedron

In geometry, the complete or final stellation of the icosahedron is the outermost stellation of the icosahedron, and is "complete" and "final" because it includes all of the cells in the icosahedron's stellation diagram. That is, every three intersecting face planes of the icosahedral core intersect either on a vertex of this polyhedron or inside of it. It was studied by Max Brückner after the discovery of Kepler–Poinsot polyhedron. It can be viewed as an irregular, simple, and star polyhedron.

<span class="mw-page-title-main">Small stellated dodecahedron</span> A Kepler-Poinsot polyhedron

In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {52,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

<span class="mw-page-title-main">Great stellated dodecahedron</span> Kepler–Poinsot polyhedron

In geometry, the great stellated dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol {52,3}. It is one of four nonconvex regular polyhedra.

<span class="mw-page-title-main">Great icosahedron</span> Kepler-Poinsot polyhedron with 20 faces

In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra, with Schläfli symbol {3,52} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.

<span class="mw-page-title-main">Great icosidodecahedron</span> Polyhedron with 32 faces

In geometry, the great icosidodecahedron is a nonconvex uniform polyhedron, indexed as U54. It has 32 faces (20 triangles and 12 pentagrams), 60 edges, and 30 vertices. It is given a Schläfli symbol r{3,52}. It is the rectification of the great stellated dodecahedron and the great icosahedron. It was discovered independently by Hess (1878), Badoureau (1881) and Pitsch (1882).

<span class="mw-page-title-main">Regular dodecahedron</span> Convex polyhedron with 12 regular pentagonal faces

A regular dodecahedron or pentagonal dodecahedron is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. It is an example of Platonic solids, described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler. However, the regular dodecahedron, including the other Platonic solids, has already been described by other philosophers since antiquity.

<span class="mw-page-title-main">Compound of ten tetrahedra</span> Polyhedral compound

The compound of ten tetrahedra is one of the five regular polyhedral compounds. This polyhedron can be seen as either a stellation of the icosahedron or a compound. This compound was first described by Edmund Hess in 1876.

<span class="mw-page-title-main">Compound of dodecahedron and icosahedron</span> Polyhedral compound

In geometry, this polyhedron can be seen as either a polyhedral stellation or a compound.

<span class="mw-page-title-main">Compound of great icosahedron and great stellated dodecahedron</span>

There are two different compounds of great icosahedron and great stellated dodecahedron: one is a dual compound and a stellation of the great icosidodecahedron, the other is a stellation of the icosidodecahedron.

<span class="mw-page-title-main">Compound of three octahedra</span> Polyhedral compound

In mathematics, the compound of three octahedra or octahedron 3-compound is a polyhedral compound formed from three regular octahedra, all sharing a common center but rotated with respect to each other. Although appearing earlier in the mathematical literature, it was rediscovered and popularized by M. C. Escher, who used it in the central image of his 1948 woodcut Stars.

<span class="mw-page-title-main">Icosahedron</span> Polyhedron with 20 faces

In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty' and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" or "icosahedrons".

A dual uniform polyhedron is the dual of a uniform polyhedron. Where a uniform polyhedron is vertex-transitive, a dual uniform polyhedron is face-transitive.

References