List of Wenninger polyhedron models

Last updated

This is an indexed list of the uniform and stellated polyhedra from the book Polyhedron Models, by Magnus Wenninger.

Contents

The book was written as a guide book to building polyhedra as physical models. It includes templates of face elements for construction and helpful hints in building, and also brief descriptions on the theory behind these shapes. It contains the 75 nonprismatic uniform polyhedra, as well as 44 stellated forms of the convex regular and quasiregular polyhedra.

Models listed here can be cited as "Wenninger Model Number N", or WN for brevity.

The polyhedra are grouped in 5 tables: Regular (1–5), Semiregular (6–18), regular star polyhedra (20–22,41), Stellations and compounds (19–66), and uniform star polyhedra (67–119). The four regular star polyhedra are listed twice because they belong to both the uniform polyhedra and stellation groupings.

Platonic solids (regular convex polyhedra) W1 to W5

IndexNamePictureDual nameDual picture Wythoff symbol Vertex figure
and Schläfli symbol
Symmetry groupU#K#VEFFaces by type
1 Tetrahedron Tetrahedron.png Tetrahedron Tetrahedron.png 3|2 3 Tetrahedron vertfig.svg
{3,3}
TdU01K064644{3}
2 Octahedron Octahedron.png Hexahedron Hexahedron.png 4|2 3 Octahedron vertfig.svg
{3,4}
OhU05K1061288{3}
3 Hexahedron (Cube) Hexahedron.png Octahedron Octahedron.png 3|2 4 Cube vertfig.png
{4,3}
OhU06K1181266{4}
4 Icosahedron Icosahedron.png Dodecahedron Dodecahedron.png 5|2 3 Icosahedron vertfig.png
{3,5}
IhU22K2712302020{3}
5 Dodecahedron Dodecahedron.png Icosahedron Icosahedron.png 3|2 5 Dodecahedron vertfig.png
{5,3}
IhU23K2820301212{5}

Archimedean solids (Semiregular) W6 to W18

IndexNamePictureDual nameDual picture Wythoff symbol Vertex figure Symmetry groupU#K#VEFFaces by type
6 Truncated tetrahedron Truncated tetrahedron.png triakis tetrahedron Triakis tetrahedron.png 2 3|3 Truncated tetrahedron vertfig.png
3.6.6
TdU02K07121884{3} + 4{6}
7 Truncated octahedron Truncated octahedron.png tetrakis hexahedron Tetrakis cube.png 2 4|3 Truncated octahedron vertfig.png
4.6.6
OhU08K131436246{4} + 8{6}
8 Truncated hexahedron Truncated hexahedron.png triakis octahedron Triakis octahedron.png 2 3|4 Truncated cube vertfig.svg
3.8.8
OhU09K142436148{3} + 6{8}
9 Truncated icosahedron Truncated icosahedron.png pentakis dodecahedron Pentakis dodecahedron.png 2 5|3 Truncated icosahedron vertfig.png
5.6.6
IhU25K3060903212{5} + 20{6}
10 Truncated dodecahedron Truncated dodecahedron.png triakis icosahedron Triakis icosahedron.png 2 3|5 Truncated dodecahedron vertfig.png
3.10.10
IhU26K3160903220{3} + 12{10}
11 Cuboctahedron Cuboctahedron.png rhombic dodecahedron Rhombic dodecahedron.png 2|3 4 Cuboctahedron vertfig.png
3.4.3.4
OhU07K121224148{3} + 6{4}
12 Icosidodecahedron Icosidodecahedron.png rhombic triacontahedron Rhombic triacontahedron.png 2|3 5 Icosidodecahedron vertfig.png
3.5.3.5
IhU24K2930603220{3} + 12{5}
13 Small rhombicuboctahedron Small rhombicuboctahedron.png deltoidal icositetrahedron Strombic icositetrahedron.png 3 4|2 Small rhombicuboctahedron vertfig.png
3.4.4.4
OhU10K152448268{3}+(6+12){4}
14 Small rhombicosidodecahedron Small rhombicosidodecahedron.png deltoidal hexecontahedron Strombic hexecontahedron.png 3 5|2 Small rhombicosidodecahedron vertfig.png
3.4.5.4
IhU27K32601206220{3} + 30{4} + 12{5}
15 Truncated cuboctahedron
(Great rhombicuboctahedron)
Great rhombicuboctahedron.png disdyakis dodecahedron Disdyakis dodecahedron.png 2 3 4| Great rhombicuboctahedron vertfig.png
4.6.8
OhU11K1648722612{4} + 8{6} + 6{8}
16 Truncated icosidodecahedron
(Great rhombicosidodecahedron)
Great rhombicosidodecahedron.png disdyakis triacontahedron Disdyakis triacontahedron.png 2 3 5| Great rhombicosidodecahedron vertfig.png
4.6.10
IhU28K331201806230{4} + 20{6} + 12{10}
17 Snub cube Snub hexahedron.png pentagonal icositetrahedron Pentagonal icositetrahedron.png |2 3 4 Snub cube vertfig.png
3.3.3.3.4
OU12K17246038(8 + 24){3} + 6{4}
18 Snub dodecahedron Snub dodecahedron ccw.png pentagonal hexecontahedron Pentagonal hexecontahedron.png |2 3 5 Snub dodecahedron vertfig.png
3.3.3.3.5
IU29K346015092(20 + 60){3} + 12{5}

Kepler–Poinsot polyhedra (Regular star polyhedra) W20, W21, W22 and W41

IndexNamePictureDual nameDual picture Wythoff symbol Vertex figure
and Schläfli symbol
Symmetry groupU#K#VEFFaces by type
20 Small stellated dodecahedron Small stellated dodecahedron.png Great dodecahedron Great dodecahedron.png 5|25/2 Small stellated dodecahedron vertfig.png
{5/2,5}
IhU34K3912301212{5/2}
21 Great dodecahedron Great dodecahedron.png Small stellated dodecahedron Small stellated dodecahedron.png 5/2|2 5 Great dodecahedron vertfig.png
{5,5/2}
IhU35K4012301212{5}
22 Great stellated dodecahedron Great stellated dodecahedron.png Great icosahedron Great icosahedron.png 3|25/2 Great stellated dodecahedron vertfig.png
{5/2,3}
IhU52K5720301212{5/2}
41 Great icosahedron
(16th stellation of icosahedron)
Great icosahedron.png Great stellated dodecahedron Great stellated dodecahedron.png 5/2|2 3 Great icosahedron vertfig.svg
{3,5/2}
IhU53K5812302020{3}
back to top WWC arrow up.png

Stellations: models W19 to W66

Stellations of octahedron

IndexNameSymmetry groupPictureFacets
2 Octahedron
(regular)
Oh Zeroth stellation of octahedron.png Zeroth stellation of octahedron facets.png
19 Stellated octahedron
(Compound of two tetrahedra)
Oh First stellation of octahedron.png Stellation of octahedron facets.png

Stellations of dodecahedron

IndexNameSymmetry groupPictureFacets
5 Dodecahedron (regular)Ih Zeroth stellation of dodecahedron.png Zeroth stellation of dodecahedron facets.svg
20 Small stellated dodecahedron (regular)
(First stellation of dodecahedron)
Ih First stellation of dodecahedron.png First stellation of dodecahedron facets.svg
21 Great dodecahedron (regular)
(Second stellation of dodecahedron)
Ih Second stellation of dodecahedron.png Second stellation of dodecahedron facets.svg
22 Great stellated dodecahedron (regular)
(Third stellation of dodecahedron)
Ih Third stellation of dodecahedron.png Third stellation of dodecahedron facets.svg

Stellations of icosahedron

IndexNameSymmetry groupPictureFacets
4 Icosahedron (regular)Ih Zeroth stellation of icosahedron.svg Stellation diagram of icosahedron.svg
23 Compound of five octahedra
(First compound stellation of icosahedron)
Ih First compound stellation of icosahedron.png Compound of five octahedra stellation facets.svg
24 Compound of five tetrahedra
(Second compound stellation of icosahedron)
I Second compound stellation of icosahedron.png Compound of five tetrahedra stellation facets.svg
25 Compound of ten tetrahedra
(Third compound stellation of icosahedron)
Ih Third compound stellation of icosahedron.png Compound of ten tetrahedra stellation facets.svg
26 Small triambic icosahedron
(First stellation of icosahedron)
(Triakis icosahedron)
Ih First stellation of icosahedron.png Small triambic icosahedron stellation facets.svg
27 Second stellation of icosahedron Ih Second stellation of icosahedron.png Wenninger I2 stellation facets.svg
28 Excavated dodecahedron
(Third stellation of icosahedron)
Ih Third stellation of icosahedron.svg Excavated dodecahedron stellation facets.svg
29 Fourth stellation of icosahedron Ih Fourth stellation of icosahedron.png Wenninger I4 stellation facets.svg
30 Fifth stellation of icosahedron Ih Fifth stellation of icosahedron.png Wenninger I5 stellation facets.svg
31 Sixth stellation of icosahedron Ih Sixth stellation of icosahedron.png Wenninger I6 stellation facets.svg
32 Seventh stellation of icosahedron Ih Seventh stellation of icosahedron.png Wenninger I7 stellation facets.svg
33 Eighth stellation of icosahedron Ih Eighth stellation of icosahedron.png Wenninger I8 stellation facets.svg
34Ninth stellation of icosahedron
Great triambic icosahedron
Ih Ninth stellation of icosahedron.png Great triambic icosahedron stellation facets.svg
35 Tenth stellation of icosahedron I Tenth stellation of icosahedron.png Wenninger I10 stellation facets.svg
36 Eleventh stellation of icosahedron I Eleventh stellation of icosahedron.png Wenninger I11 stellation facets.svg
37 Twelfth stellation of icosahedron Ih Twelfth stellation of icosahedron.png Wenninger I12 stellation facets.svg
38 Thirteenth stellation of icosahedron I Thirteenth stellation of icosahedron.png Wenninger I13 stellation facets.svg
39 Fourteenth stellation of icosahedron I Fourteenth stellation of icosahedron.png Wenninger I14 stellation facets.svg
40 Fifteenth stellation of icosahedron I Fifteenth stellation of icosahedron.png Wenninger I15 stellation facets.svg
41 Great icosahedron (regular)
(Sixteenth stellation of icosahedron)
Ih Sixteenth stellation of icosahedron.png Great icosahedron stellation facets.svg
42 Final stellation of the icosahedron Ih Seventeenth stellation of icosahedron.png Echidnahedron stellation facets.svg

Stellations of cuboctahedron

IndexNameSymmetry groupPictureFacets (octahedral planes)Facets (cube planes)
11 Cuboctahedron (regular)Oh Zeroth stellation of cuboctahedron.png Zeroth stellation of cuboctahedron facets.png Zeroth stellation of cuboctahedron square facets.png
43 Compound of cube and octahedron
(First stellation of cuboctahedron)
Oh First stellation of cuboctahedron.png First stellation of cuboctahedron trifacets.png First stellation of cuboctahedron square facets.png
44 Second stellation of cuboctahedron Oh Second stellation of cuboctahedron.png Second stellation of cuboctahedron trifacets.png Second stellation of cuboctahedron square facets.png
45 Third stellation of cuboctahedron Oh Third stellation of cuboctahedron.png Third stellation of cuboctahedron trifacets.png Third stellation of cuboctahedron square facets.png
46 Fourth stellation of cuboctahedron Oh Fourth stellation of cuboctahedron.png Fourth stellation of cuboctahedron trifacets.png Fourth stellation of cuboctahedron square facets.png

Stellations of icosidodecahedron

IndexNameSymmetry groupPictureFacets (icosahedral planes)Facets (dodecahedral planes)
12 Icosidodecahedron
(regular)
Ih Zeroth stellation of icosidodecahedron.png Zeroth stellation of icosidodecahedron trifacets.png Zeroth stellation of icosidodecahedron pentfacets.png
47(First stellation of icosidodecahedron)
Compound of dodecahedron and icosahedron
Ih First stellation of icosidodecahedron.png First stellation of icosidodecahedron facets.png First stellation of icosidodecahedron pentfacets.png
48 Second stellation of icosidodecahedron Ih Second stellation of icosidodecahedron.png Second stellation of icosidodecahedron facets.png Second stellation of icosidodecahedron pentfacets.png
49 Third stellation of icosidodecahedron Ih Third stellation of icosidodecahedron.png Third stellation of icosidodecahedron facets.png Third stellation of icosidodecahedron pentfacets.png
50 Fourth stellation of icosidodecahedron
(Compound of small stellated dodecahedron
and triakis icosahedron)
Ih Fourth stellation of icosidodecahedron.png Fourth stellation of icosidodecahedron facets.png Fourth stellation of icosidodecahedron pentfacets.png
51 Fifth stellation of icosidodecahedron
(Compound of small stellated dodecahedron
and five octahedra)
Ih Fifth stellation of icosidodecahedron.png Fifth stellation of icosidodecahedron facets.png Fifth stellation of icosidodecahedron pentfacets.png
52 Sixth stellation of icosidodecahedron Ih Sixth stellation of icosidodecahedron.png Sixth stellation of icosidodecahedron facets.png Sixth stellation of icosidodecahedron pentfacets.png
53 Seventh stellation of icosidodecahedron Ih Seventh stellation of icosidodecahedron.png Seventh stellation of icosidodecahedron facets.png Seventh stellation of icosidodecahedron pentfacets.png
54 Eighth stellation of icosidodecahedron
(Compound of five tetrahedra
and great dodecahedron)
I Eighth stellation of icosidodecahedron.png Eighth stellation of icosidodecahedron facets.png Eighth stellation of icosidodecahedron pentfacets.png
55 Ninth stellation of icosidodecahedron Ih Ninth stellation of icosidodecahedron.png Ninth stellation of icosidodecahedron facets.png Ninth stellation of icosidodecahedron pentfacets.png
56 Tenth stellation of icosidodecahedron Ih Tenth stellation of icosidodecahedron.png Tenth stellation of icosidodecahedron facets.png Tenth stellation of icosidodecahedron pentfacets.png
57 Eleventh stellation of icosidodecahedron Ih Eleventh stellation of icosidodecahedron.png Eleventh stellation of icosidodecahedron facets.png Eleventh stellation of icosidodecahedron pentfacets.png
58 Twelfth stellation of icosidodecahedron Ih Twelfth stellation of icosidodecahedron.png Twelfth stellation of icosidodecahedron facets.png Twelfth stellation of icosidodecahedron pentfacets.png
59 Thirteenth stellation of icosidodecahedron Ih Thirteenth stellation of icosidodecahedron.png Thirteenth stellation of icosidodecahedron facets.png Thirteenth stellation of icosidodecahedron pentfacets.png
60 Fourteenth stellation of icosidodecahedron Ih Fourteenth stellation of icosidodecahedron.png Fourteenth stellation of icosidodecahedron facets.png Fourteenth stellation of icosidodecahedron pentfacets.png
61 Compound of great stellated dodecahedron and great icosahedron Ih Second compound stellation of icosidecahedron.png Second compound stellation of icosidecahedron facets.png Second compound stellation of icosidecahedron pentfacets.png
62 Fifteenth stellation of icosidodecahedron Ih Fifteenth stellation of icosidodecahedron.png Fifteenth stellation of icosidodecahedron facets.png Fifteenth stellation of icosidodecahedron pentfacets.png
63 Sixteenth stellation of icosidodecahedron Ih Sixteenth stellation of icosidodecahedron.png Sixteenth stellation of icosidodecahedron facets.png Sixteenth stellation of icosidodecahedron pentfacets.png
64 Seventeenth stellation of icosidodecahedron Ih Seventeenth stellation of icosidodecahedron.png Seventeenth stellation of icosidodecahedron facets.png Seventeenth stellation of icosidodecahedron pentfacets.png
65 Eighteenth stellation of icosidodecahedron Ih Eighteenth stellation of icosidodecahedron.png Eighteenth stellation of icosidodecahedron facets.png Eighteenth stellation of icosidodecahedron pentfacets.png
66 Nineteenth stellation of icosidodecahedron Ih Nineteenth stellation of icosidodecahedron.png Nineteenth stellation of icosidodecahedron facets.png Nineteenth stellation of icosidodecahedron pentfacets.png

Uniform nonconvex solids W67 to W119

IndexNamePictureDual nameDual picture Wythoff symbol Vertex figure Symmetry groupU#K#VEFFaces by type
67 Tetrahemihexahedron Tetrahemihexahedron.png Tetrahemihexacron Tetrahemihexacron.png 3/23|2 Tetrahemihexahedron vertfig.png
4.3/2.4.3
TdU04K0961274{3}+3{4}
68 Octahemioctahedron Octahemioctahedron.png Octahemioctacron Hexahemioctacron.png 3/23|3 Octahemioctahedron vertfig.png
6.3/2.6.3
OhU03K081224128{3}+4{6}
69 Small cubicuboctahedron Small cubicuboctahedron.png Small hexacronic icositetrahedron DU13 small hexacronic icositetrahedron.png 3/24|4 Small cubicuboctahedron vertfig.png
8.3/2.8.4
OhU13K182448208{3}+6{4}+6{8}
70 Small ditrigonal icosidodecahedron Small ditrigonal icosidodecahedron.png Small triambic icosahedron DU30 small triambic icosahedron.png 3|5/23 Small ditrigonal icosidodecahedron vertfig.png
(5/2.3)3
IhU30K3520603220{3}+12{5/2}
71 Small icosicosidodecahedron Small icosicosidodecahedron.png Small icosacronic hexecontahedron DU31 small icosacronic hexecontahedron.png 5/23|3 Small icosicosidodecahedron vertfig.png
6.5/2.6.3
IhU31K36601205220{3}+12{5/2}+20{6}
72 Small dodecicosidodecahedron Small dodecicosidodecahedron.png Small dodecacronic hexecontahedron DU33 small dodecacronic hexecontahedron.png 3/25|5 Small dodecicosidodecahedron vertfig.png
10.3/2.10.5
IhU33K38601204420{3}+12{5}+12{10}
73 Dodecadodecahedron Dodecadodecahedron.png Medial rhombic triacontahedron DU36 medial rhombic triacontahedron.png 2|5/25 Dodecadodecahedron vertfig.png
(5/2.5)2
IhU36K4130602412{5}+12{5/2}
74 Small rhombidodecahedron Small rhombidodecahedron.png Small rhombidodecacron DU39 small rhombidodecacron.png 25/25| Small rhombidodecahedron vertfig.png
10.4.10/9.4/3
IhU39K44601204230{4}+12{10}
75 Truncated great dodecahedron Great truncated dodecahedron.png Small stellapentakis dodecahedron DU37 small stellapentakisdodecahedron.png 25/2|5 Truncated great dodecahedron vertfig.png
10.10.5/2
IhU37K4260902412{5/2}+12{10}
76 Rhombidodecadodecahedron Rhombidodecadodecahedron.png Medial deltoidal hexecontahedron DU38 medial trapezoidal hexecontahedron.png 5/25|2 Rhombidodecadodecahedron vertfig.png
4.5/2.4.5
IhU38K43601205430{4}+12{5}+12{5/2}
77 Great cubicuboctahedron Great cubicuboctahedron.png Great hexacronic icositetrahedron DU14 great hexacronic icositetrahedron.png 3 4|4/3 Great cubicuboctahedron vertfig.png
8/3.3.8/3.4
OhU14K192448208{3}+6{4}+6{8/3}
78 Cubohemioctahedron Cubohemioctahedron.png Hexahemioctacron Hexahemioctacron.png 4/34|3 Cubohemioctahedron vertfig.png
6.4/3.6.4
OhU15K201224106{4}+4{6}
79 Cubitruncated cuboctahedron
(Cuboctatruncated cuboctahedron)
Cubitruncated cuboctahedron.png Tetradyakis hexahedron DU16 tetradyakishexahedron.png 4/33 4| Cubitruncated cuboctahedron vertfig.png
8/3.6.8
OhU16K214872208{6}+6{8}+6{8/3}
80 Ditrigonal dodecadodecahedron Ditrigonal dodecadodecahedron.png Medial triambic icosahedron DU41 medial triambic icosahedron.png 3|5/35 Ditrigonal dodecadodecahedron vertfig.png
(5/3.5)3
IhU41K4620602412{5}+12{5/2}
81 Great ditrigonal dodecicosidodecahedron Great ditrigonal dodecicosidodecahedron.png Great ditrigonal dodecacronic hexecontahedron DU42 great ditrigonal dodecacronic hexecontahedron.png 3 5|5/3 Great ditrigonal dodecicosidodecahedron vertfig.png
10/3.3.10/3.5
IhU42K47601204420{3}+12{5}+12{10/3}
82 Small ditrigonal dodecicosidodecahedron Small ditrigonal dodecicosidodecahedron.png Small ditrigonal dodecacronic hexecontahedron DU43 Small ditrigonal dodecacronic hexecontahedron.png 5/33|5 Small ditrigonal dodecicosidodecahedron vertfig.png
10.5/3.10.3
IhU43K48601204420{3}+12{5/2}+12{10}
83 Icosidodecadodecahedron Icosidodecadodecahedron.png Medial icosacronic hexecontahedron DU44 medial icosacronic hexecontahedron.png 5/35|3 Icosidodecadodecahedron vertfig.png
6.5/3.6.5
IhU44K49601204412{5}+12{5/2}+20{6}
84 Icositruncated dodecadodecahedron
(Icosidodecatruncated icosidodecahedron)
Icositruncated dodecadodecahedron.png Tridyakis icosahedron DU45 tridyakisicosahedron.png 5/33 5| Icositruncated dodecadodecahedron vertfig.png
10/3.6.10
IhU45K501201804420{6}+12{10}+12{10/3}
85 Nonconvex great rhombicuboctahedron
(Quasirhombicuboctahedron)
Uniform great rhombicuboctahedron.png Great deltoidal icositetrahedron DU17 great strombic icositetrahedron.png 3/24|2 Great rhombicuboctahedron vertfig.png
4.3/2.4.4
OhU17K222448268{3}+(6+12){4}
86 Small rhombihexahedron Small rhombihexahedron.png Small rhombihexacron DU18 small rhombihexacron.png 3/22 4| Small rhombihexahedron vertfig.png
4.8.4/3.8
OhU18K2324481812{4}+6{8}
87 Great ditrigonal icosidodecahedron Great ditrigonal icosidodecahedron.png Great triambic icosahedron DU47 great triambic icosahedron.png 3/2|3 5 Great ditrigonal icosidodecahedron vertfig.png
(5.3.5.3.5.3)/2
IhU47K5220603220{3}+12{5}
88 Great icosicosidodecahedron Great icosicosidodecahedron.png Great icosacronic hexecontahedron DU48 great icosacronic hexecontahedron.png 3/25|3 Great icosicosidodecahedron vertfig.png
6.3/2.6.5
IhU48K53601205220{3}+12{5}+20{6}
89 Small icosihemidodecahedron Small icosihemidodecahedron.png Small icosihemidodecacron Small dodecahemidodecacron.png 3/23|5 Small icosihemidodecahedron vertfig.svg
10.3/2.10.3
IhU49K5430602620{3}+6{10}
90 Small dodecicosahedron Small dodecicosahedron.png Small dodecicosacron DU50 small dodecicosacron.png 3/23 5| Small dodecicosahedron vertfig.png
10.6.10/9.6/5
IhU50K55601203220{6}+12{10}
91 Small dodecahemidodecahedron Small dodecahemidodecahedron.png Small dodecahemidodecacron Small dodecahemidodecacron.png 5/45|5 Small dodecahemidodecahedron vertfig.png
10.5/4.10.5
IhU51K5630601812{5}+6{10}
92 Stellated truncated hexahedron
(Quasitruncated hexahedron)
Stellated truncated hexahedron.png Great triakis octahedron DU19 great triakisoctahedron.png 2 3|4/3 Stellated truncated hexahedron vertfig.png
8/3.8/3.3
OhU19K242436148{3}+6{8/3}
93 Great truncated cuboctahedron
(Quasitruncated cuboctahedron)
Great truncated cuboctahedron.png Great disdyakis dodecahedron DU20 great disdyakisdodecahedron.png 4/32 3| Great truncated cuboctahedron vertfig.png
8/3.4.6
OhU20K2548722612{4}+8{6}+6{8/3}
94 Great icosidodecahedron Great icosidodecahedron.png Great rhombic triacontahedron DU54 great rhombic triacontahedron.png 2|5/23 Great icosidodecahedron vertfig.png
(5/2.3)2
IhU54K5930603220{3}+12{5/2}
95 Truncated great icosahedron Great truncated icosahedron.png Great stellapentakis dodecahedron DU55 great stellapentakisdodecahedron.png 25/2|3 Great truncated icosahedron vertfig.png
6.6.5/2
IhU55K6060903212{5/2}+20{6}
96 Rhombicosahedron Rhombicosahedron.png Rhombicosacron DU56 rhombicosacron.png 25/23| Rhombicosahedron vertfig.png
6.4.6/5.4/3
IhU56K61601205030{4}+20{6}
97 Small stellated truncated dodecahedron
(Quasitruncated small stellated dodecahedron)
Small stellated truncated dodecahedron.png Great pentakis dodecahedron DU58 great pentakisdodecahedron.png 2 5|5/3 Small stellated truncated dodecahedron vertfig.png
10/3.10/3.5
IhU58K6360902412{5}+12{10/3}
98 Truncated dodecadodecahedron
(Quasitruncated dodecahedron)
Truncated dodecadodecahedron.png Medial disdyakis triacontahedron DU59 medial disdyakistriacontahedron.png 5/32 5| Truncated dodecadodecahedron vertfig.png
10/3.4.10
IhU59K641201805430{4}+12{10}+12{10/3}
99 Great dodecicosidodecahedron Great dodecicosidodecahedron.png Great dodecacronic hexecontahedron DU61 great dodecacronic hexecontahedron.png 5/23|5/3 Great dodecicosidodecahedron vertfig.png
10/3.5/2.10/3.3
IhU61K66601204420{3}+12{5/2}+12{10/3}
100 Small dodecahemicosahedron Small dodecahemicosahedron.png Small dodecahemicosacron Small dodecahemicosacron.png 5/35/2|3 Small dodecahemicosahedron vertfig.png
6.5/3.6.5/2
IhU62K6730602212{5/2}+10{6}
101 Great dodecicosahedron Great dodecicosahedron.png Great dodecicosacron DU63 great dodecicosacron.png 5/35/23| Great dodecicosahedron vertfig.png
6.10/3.6/5.10/7
IhU63K68601203220{6}+12{10/3}
102 Great dodecahemicosahedron Great dodecahemicosahedron.png Great dodecahemicosacron Small dodecahemicosacron.png 5/45|3 Great dodecahemicosahedron vertfig.png
6.5/4.6.5
IhU65K7030602212{5}+10{6}
103 Great rhombihexahedron Great rhombihexahedron.png Great rhombihexacron DU21 great rhombihexacron.png 4/33/22| Great rhombihexahedron vertfig.png
4.8/3.4/3.8/5
OhU21K2624481812{4}+6{8/3}
104 Great stellated truncated dodecahedron
(Quasitruncated great stellated dodecahedron)
Great stellated truncated dodecahedron.png Great triakis icosahedron DU66 great triakisicosahedron.png 2 3|5/3 Great stellated truncated dodecahedron vertfig.png
10/3.10/3.3
IhU66K7160903220{3}+12{10/3}
105 Nonconvex great rhombicosidodecahedron
(Quasirhombicosidodecahedron)
Uniform great rhombicosidodecahedron.png Great deltoidal hexecontahedron DU67 great strombic hexecontahedron.png 5/33|2 Uniform great rhombicosidodecahedron vertfig.png
4.5/3.4.3
IhU67K72601206220{3}+30{4}+12{5/2}
106 Great icosihemidodecahedron Great icosihemidodecahedron.png Great icosihemidodecacron Great dodecahemidodecacron.png 3 3|5/3 Great icosihemidodecahedron vertfig.png
10/3.3/2.10/3.3
IhU71K7630602620{3}+6{10/3}
107 Great dodecahemidodecahedron Great dodecahemidodecahedron.png Great dodecahemidodecacron Great dodecahemidodecacron.png 5/35/2|5/3 Great dodecahemidodecahedron vertfig.png
10/3.5/3.10/3.5/2
IhU70K7530601812{5/2}+6{10/3}
108 Great truncated icosidodecahedron
(Great quasitruncated icosidodecahedron)
Great truncated icosidodecahedron.png Great disdyakis triacontahedron DU68 great disdyakistriacontahedron.png 5/32 3| Great truncated icosidodecahedron vertfig.png
10/3.4.6
IhU68K731201806230{4}+20{6}+12{10/3}
109 Great rhombidodecahedron Great rhombidodecahedron.png Great rhombidodecacron DU73 great rhombidodecacron.png 3/25/32| Great rhombidodecahedron vertfig.png
4.10/3.4/3.10/7
IhU73K78601204230{4}+12{10/3}
110 Small snub icosicosidodecahedron Small snub icosicosidodecahedron.png Small hexagonal hexecontahedron DU32 small hexagonal hexecontahedron.png |5/23 3 Small snub icosicosidodecahedron vertfig.png
3.3.3.3.3.5/2
IhU32K3760180112(40+60){3}+12{5/2}
111 Snub dodecadodecahedron Snub dodecadodecahedron.png Medial pentagonal hexecontahedron DU40 medial pentagonal hexecontahedron.png |25/25 Snub dodecadodecahedron vertfig.png
3.3.5/2.3.5
IU40K45601508460{3}+12{5}+12{5/2}
112 Snub icosidodecadodecahedron Snub icosidodecadodecahedron.png Medial hexagonal hexecontahedron DU46 medial hexagonal hexecontahedron.png |5/33 5 Snub icosidodecadodecahedron vertfig.png
3.3.3.3.5.5/3
IU46K5160180104(20+6){3}+12{5}+12{5/2}
113 Great inverted snub icosidodecahedron Great inverted snub icosidodecahedron.png Great inverted pentagonal hexecontahedron DU69 great inverted pentagonal hexecontahedron.png |5/32 3 Great inverted snub icosidodecahedron vertfig.png
3.3.3.3.5/3
IU69K746015092(20+60){3}+12{5/2}
114 Inverted snub dodecadodecahedron Inverted snub dodecadodecahedron.png Medial inverted pentagonal hexecontahedron DU60 medial inverted pentagonal hexecontahedron.png |5/32 5 Inverted snub dodecadodecahedron vertfig.png
3.5/3.3.3.5
IU60K65601508460{3}+12{5}+12{5/2}
115 Great snub dodecicosidodecahedron Great snub dodecicosidodecahedron.png Great hexagonal hexecontahedron DU64 great hexagonal hexecontahedron.png |5/35/23 Great snub dodecicosidodecahedron vertfig.png
3.5/3.3.5/2.3.3
IU64K6960180104(20+60){3}+(12+12){5/2}
116 Great snub icosidodecahedron Great snub icosidodecahedron.png Great pentagonal hexecontahedron DU57 great pentagonal hexecontahedron (2).png |25/25/2 Great snub icosidodecahedron vertfig.png
3.3.3.3.5/2
IU57K626015092(20+60){3}+12{5/2}
117 Great retrosnub icosidodecahedron Great retrosnub icosidodecahedron.png Great pentagrammic hexecontahedron DU74 great pentagrammic hexecontahedron.png |3/25/32 Great retrosnub icosidodecahedron vertfig.png
(3.3.3.3.5/2)/2
IU74K796015092(20+60){3}+12{5/2}
118 Small retrosnub icosicosidodecahedron Small retrosnub icosicosidodecahedron.png Small hexagrammic hexecontahedron DU72 small hexagrammic hexecontahedron.png |3/23/25/2 Small retrosnub icosicosidodecahedron vertfig.png
(3.3.3.3.3.5/2)/2
IhU72K7718060112(40+60){3}+12{5/2}
119 Great dirhombicosidodecahedron Great dirhombicosidodecahedron.png Great dirhombicosidodecacron Great dirhombicosidodecacron.png |3/25/335/2 Great dirhombicosidodecahedron vertfig.png
(4.5/3.4.3.4.5/2.4.3/2)/2
IhU75K806024012440{3}+60{4}+24{5/2}
back to top WWC arrow up.png

See also

Related Research Articles

<span class="mw-page-title-main">Kepler–Poinsot polyhedron</span> Any of 4 regular star polyhedra

In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra.

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

<span class="mw-page-title-main">Stellation</span> Extending the elements of a polytope to form a new figure

In geometry, stellation is the process of extending a polygon in two dimensions, a polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from the Latin stella, "star". Stellation is the reciprocal or dual process to faceting.

<span class="mw-page-title-main">Polyhedron model</span>

A polyhedron model is a physical construction of a polyhedron, constructed from cardboard, plastic board, wood board or other panel material, or, less commonly, solid material.

<span class="mw-page-title-main">Tetrahemihexahedron</span> Polyhedron with 7 faces

In geometry, the tetrahemihexahedron or hemicuboctahedron is a uniform star polyhedron, indexed as U4. It has 7 faces (4 triangles and 3 squares), 12 edges, and 6 vertices. Its vertex figure is a crossed quadrilateral. Its Coxeter–Dynkin diagram is (although this is a double covering of the tetrahemihexahedron).

<span class="mw-page-title-main">Final stellation of the icosahedron</span> Outermost stellation of the icosahedron

In geometry, the complete or final stellation of the icosahedron is the outermost stellation of the icosahedron, and is "complete" and "final" because it includes all of the cells in the icosahedron's stellation diagram. That is, every three intersecting face planes of the icosahedral core intersect either on a vertex of this polyhedron or inside of it. It was studied by Max Brückner after the discovery of Kepler–Poinsot polyhedron. It can be viewed as an irregular, simple, and star polyhedron.

<span class="mw-page-title-main">Small stellated dodecahedron</span> A Kepler-Poinsot polyhedron

In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {52,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

<span class="mw-page-title-main">Great stellated dodecahedron</span> Kepler–Poinsot polyhedron

In geometry, the great stellated dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol {52,3}. It is one of four nonconvex regular polyhedra.

<span class="mw-page-title-main">Great icosahedron</span> Kepler-Poinsot polyhedron with 20 faces

In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra, with Schläfli symbol {3,52} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.

<span class="mw-page-title-main">Great icosidodecahedron</span> Polyhedron with 32 faces

In geometry, the great icosidodecahedron is a nonconvex uniform polyhedron, indexed as U54. It has 32 faces (20 triangles and 12 pentagrams), 60 edges, and 30 vertices. It is given a Schläfli symbol r{3,52}. It is the rectification of the great stellated dodecahedron and the great icosahedron. It was discovered independently by Hess (1878), Badoureau (1881) and Pitsch (1882).

<span class="mw-page-title-main">Great dodecahemicosahedron</span> Polyhedron with 22 faces

In geometry, the great dodecahemicosahedron (or great dodecahemiicosahedron) is a nonconvex uniform polyhedron, indexed as U65. It has 22 faces (12 pentagons and 10 hexagons), 60 edges, and 30 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Compound of five octahedra</span> Polyhedral compound

The compound of five octahedra is one of the five regular polyhedron compounds, and can also be seen as a stellation. It was first described by Edmund Hess in 1876. It is unique among the regular compounds for not having a regular convex hull.

<span class="mw-page-title-main">Compound of great icosahedron and great stellated dodecahedron</span>

There are two different compounds of great icosahedron and great stellated dodecahedron: one is a dual compound and a stellation of the great icosidodecahedron, the other is a stellation of the icosidodecahedron.

<span class="mw-page-title-main">Magnus Wenninger</span> American mathematician (1919–2017)

Father Magnus J. Wenninger OSB was an American mathematician who worked on constructing polyhedron models, and wrote the first book on their construction.

<span class="mw-page-title-main">Small triambic icosahedron</span>

In geometry, the small triambic icosahedron is a star polyhedron composed of 20 intersecting non-regular hexagon faces. It has 60 edges and 32 vertices, and Euler characteristic of −8. It is an isohedron, meaning that all of its faces are symmetric to each other. Branko Grünbaum has conjectured that it is the only Euclidean isohedron with convex faces of six or more sides, but the small hexagonal hexecontahedron is another example.

<span class="mw-page-title-main">Stellation diagram</span>

In geometry, a stellation diagram or stellation pattern is a two-dimensional diagram in the plane of some face of a polyhedron, showing lines where other face planes intersect with this one. The lines cause 2D space to be divided up into regions. Regions not intersected by any further lines are called elementary regions. Usually unbounded regions are excluded from the diagram, along with any portions of the lines extending to infinity. Each elementary region represents a top face of one cell, and a bottom face of another.

<span class="mw-page-title-main">Great triambic icosahedron</span>

In geometry, the great triambic icosahedron and medial triambic icosahedron (or midly triambic icosahedron) are visually identical dual uniform polyhedra. The exterior surface also represents the De2f2stellation of the icosahedron. These figures can be differentiated by marking which intersections between edges are true vertices and which are not. In the above images, true vertices are marked by gold spheres, which can be seen in the concave Y-shaped areas. Alternatively, if the faces are filled with the even–odd rule, the internal structure of both shapes will differ.

In geometry, a hemipolyhedron is a uniform star polyhedron some of whose faces pass through its center. These "hemi" faces lie parallel to the faces of some other symmetrical polyhedron, and their count is half the number of faces of that other polyhedron – hence the "hemi" prefix.

A dual uniform polyhedron is the dual of a uniform polyhedron. Where a uniform polyhedron is vertex-transitive, a dual uniform polyhedron is face-transitive.

References