Medial deltoidal hexecontahedron

Last updated
Medial deltoidal hexecontahedron
DU38 medial trapezoidal hexecontahedron.png
Type Star polyhedron
Face DU38 facets.png
Elements F = 60, E = 120
V = 54 (χ = 6)
Symmetry group Ih, [5,3], *532
Index references DU 38
dual polyhedron Rhombidodecadodecahedron
3D model of a medial deltoidal hexecontahedron Medial deltoidal hexecontahedron.stl
3D model of a medial deltoidal hexecontahedron

In geometry, the medial deltoidal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the rhombidodecadodecahedron. Its 60 intersecting quadrilateral faces are kites.

Contents

Proportions

The kites have two angles of , one of and one of . The dihedral angle equals . The ratio between the lengths of the long and short edges is . Part of each kite lies inside the solid, hence is invisible in solid models.

Related Research Articles

<span class="mw-page-title-main">Deltoidal icositetrahedron</span> Catalan solid with 24 kite faces

In geometry, the deltoidal icositetrahedron is a Catalan solid. Its 24 faces are congruent kites. The deltoidal icositetrahedron, whose dual is the (uniform) rhombicuboctahedron, is tightly related to the pseudo-deltoidal icositetrahedron, whose dual is the pseudorhombicuboctahedron; but the actual and pseudo-d.i. are not to be confused with each other.

<span class="mw-page-title-main">Pentagonal hexecontahedron</span>

In geometry, a pentagonal hexecontahedron is a Catalan solid, dual of the snub dodecahedron. It has two distinct forms, which are mirror images of each other. It has 92 vertices that span 60 pentagonal faces. It is the Catalan solid with the most vertices. Among the Catalan and Archimedean solids, it has the second largest number of vertices, after the truncated icosidodecahedron, which has 120 vertices.

<span class="mw-page-title-main">Small dodecicosidodecahedron</span> Polyhedron with 44 faces

In geometry, the small dodecicosidodecahedron (or small dodekicosidodecahedron) is a nonconvex uniform polyhedron, indexed as U33. It has 44 faces (20 triangles, 12 pentagons, and 12 decagons), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Cubitruncated cuboctahedron</span> Polyhedron with 20 faces

In geometry, the cubitruncated cuboctahedron or cuboctatruncated cuboctahedron is a nonconvex uniform polyhedron, indexed as U16. It has 20 faces (8 hexagons, 6 octagons, and 6 octagrams), 72 edges, and 48 vertices,and has a shäfli symbol of tr{4,3/2}

<span class="mw-page-title-main">Great rhombic triacontahedron</span> Polyhedron with 30 faces

In geometry, the great rhombic triacontahedron is a nonconvex isohedral, isotoxal polyhedron. It is the dual of the great icosidodecahedron (U54). Like the convex rhombic triacontahedron it has 30 rhombic faces, 60 edges and 32 vertices.

<span class="mw-page-title-main">Great deltoidal icositetrahedron</span> Polyhedron with 24 faces

In geometry, the great deltoidal icositetrahedron is the dual of the nonconvex great rhombicuboctahedron. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Small dodecicosacron</span> Polyhedron with 60 faces

In geometry, the small dodecicosacron is the dual of the small dodecicosahedron (U50). It is visually identical to the Small ditrigonal dodecacronic hexecontahedron. It has 60 intersecting bow-tie-shaped faces.

<span class="mw-page-title-main">Small rhombidodecacron</span>

In geometry, the small rhombidodecacron is a nonconvex isohedral polyhedron. It is the dual of the small rhombidodecahedron. It is visually identical to the Small dodecacronic hexecontahedron. It has 60 intersecting antiparallelogram faces.

<span class="mw-page-title-main">Rhombicosacron</span> Polyhedron with 60 faces

In geometry, the rhombicosacron is a nonconvex isohedral polyhedron. It is the dual of the uniform rhombicosahedron, U56. It has 50 vertices, 120 edges, and 60 crossed-quadrilateral faces.

<span class="mw-page-title-main">Great icosacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the great icosacronic hexecontahedron is the dual of the great icosicosidodecahedron. Its faces are darts. A part of each dart lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Medial pentagonal hexecontahedron</span> Star polyhedron with 60 faces

In geometry, the medial pentagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the snub dodecadodecahedron. It has 60 intersecting irregular pentagonal faces.

<span class="mw-page-title-main">Great deltoidal hexecontahedron</span>

In geometry, the great deltoidal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the nonconvex great rhombicosidodecahedron. It is visually identical to the great rhombidodecacron. It has 60 intersecting cross quadrilateral faces, 120 edges, and 62 vertices. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Great rhombidodecacron</span> Polyhedron with 60 faces

In geometry, the great rhombidodecacron is a nonconvex isohedral polyhedron. It is the dual of the great rhombidodecahedron. It is visually identical to the great deltoidal hexecontahedron. Its faces are antiparallelograms.

<span class="mw-page-title-main">Small hexagrammic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the small hexagrammic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the small retrosnub icosicosidodecahedron. It is partially degenerate, having coincident vertices, as its dual has coplanar triangular faces.

<span class="mw-page-title-main">Small icosacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the small icosacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small icosicosidodecahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Great ditrigonal dodecacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the great ditrigonal dodecacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great ditrigonal dodecicosidodecahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Small ditrigonal dodecacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the small ditrigonal dodecacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small ditrigonal dodecicosidodecahedron. It is visually identical to the small dodecicosacron. Its faces are darts. A part of each dart lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Medial icosacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the medial icosacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform icosidodecadodecahedron. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Medial hexagonal hexecontahedron</span> Polyhedron with 60 faces

In geometry, the medial hexagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform snub icosidodecadodecahedron.

<span class="mw-page-title-main">Great dodecacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the great dodecacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great dodecicosidodecahedron. Its 60 intersecting quadrilateral faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

References