Great icosihemidodecahedron

Last updated
Great icosihemidodecahedron
Great icosihemidodecahedron.png
Type Uniform star polyhedron
Elements F = 26, E = 60
V = 30 (χ = 4)
Faces by sides20{3}+6{10/3}
Coxeter diagram CDel label5-3.pngCDel branch 11.pngCDel split2-t3.pngCDel node.png
Wythoff symbol 3/2 3 | 5/3
Symmetry group Ih, [5,3], *532
Index references U 71, C 85, W 106
Dual polyhedron Great icosihemidodecacron
Vertex figure Great icosihemidodecahedron vertfig.png
3.10/3.3/2.10/3
Bowers acronym Geihid
3D model of a great icosihemidodecahedron Great icosihemidodecahedron.stl
3D model of a great icosihemidodecahedron

In geometry, the great icosihemidodecahedron (or great icosahemidodecahedron) is a nonconvex uniform polyhedron, indexed as U71. It has 26 faces (20 triangles and 6 decagrams), 60 edges, and 30 vertices. [1] Its vertex figure is a crossed quadrilateral.

Contents

It is a hemipolyhedron with 6 decagrammic faces passing through the model center.

Its convex hull is the icosidodecahedron. It also shares its edge arrangement with the great icosidodecahedron (having the triangular faces in common), and with the great dodecahemidodecahedron (having the decagrammic faces in common).

Great icosidodecahedron.png
Great icosidodecahedron
Great dodecahemidodecahedron.png
Great dodecahemidodecahedron
Great icosihemidodecahedron.png
Great icosihemidodecahedron
Icosidodecahedron.png
Icosidodecahedron (convex hull)


Great icosihemidodecahedron.png
Traditional filling
Great icosihemidodecahedron 2.png
Modulo-2 filling

See also

Related Research Articles

<span class="mw-page-title-main">Icosidodecahedron</span> Archimedean solid with 32 faces

In geometry, an icosidodecahedron is a polyhedron with twenty (icosi) triangular faces and twelve (dodeca) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.

<span class="mw-page-title-main">Truncated icosidodecahedron</span> Archimedean solid

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Great icosahedron</span> Kepler-Poinsot polyhedron with 20 faces

In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra, with Schläfli symbol {3,52} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.

<span class="mw-page-title-main">Small dodecahemidodecahedron</span> Uniform star polyhedron with 18 faces

In geometry, the small dodecahemidodecahedron is a nonconvex uniform polyhedron, indexed as U51. It has 18 faces (12 pentagons and 6 decagons), 60 edges, and 30 vertices. Its vertex figure alternates two regular pentagons and decagons as a crossed quadrilateral.

<span class="mw-page-title-main">Small icosihemidodecahedron</span> Uniform star polyhedron with 26 faces

In geometry, the small icosihemidodecahedron (or small icosahemidodecahedron) is a uniform star polyhedron, indexed as U49. It has 26 faces (20 triangles and 6 decagons), 60 edges, and 30 vertices. Its vertex figure alternates two regular triangles and decagons as a crossed quadrilateral. It is a hemipolyhedron with its six decagonal faces passing through the model center.

<span class="mw-page-title-main">Small ditrigonal icosidodecahedron</span> Polyhedron with 32 faces

In geometry, the small ditrigonal icosidodecahedron (or small ditrigonary icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U30. It has 32 faces (20 triangles and 12 pentagrams), 60 edges, and 20 vertices. It has extended Schläfli symbol a{5,3}, as an altered dodecahedron, and Coxeter diagram or .

<span class="mw-page-title-main">Dodecadodecahedron</span> Polyhedron with 24 faces

In geometry, the dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U36. It is the rectification of the great dodecahedron (and that of its dual, the small stellated dodecahedron). It was discovered independently by Hess (1878), Badoureau (1881) and Pitsch (1882).

<span class="mw-page-title-main">Great icosidodecahedron</span> Polyhedron with 32 faces

In geometry, the great icosidodecahedron is a nonconvex uniform polyhedron, indexed as U54. It has 32 faces (20 triangles and 12 pentagrams), 60 edges, and 30 vertices. It is given a Schläfli symbol r{3,52}. It is the rectification of the great stellated dodecahedron and the great icosahedron. It was discovered independently by Hess (1878), Badoureau (1881) and Pitsch (1882).

<span class="mw-page-title-main">Great ditrigonal dodecicosidodecahedron</span> Polyhedron with 44 faces

In geometry, the great ditrigonal dodecicosidodecahedron (or great dodekified icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U42. It has 44 faces (20 triangles, 12 pentagons, and 12 decagrams), 120 edges, and 60 vertices. Its vertex figure is an isosceles trapezoid.

<span class="mw-page-title-main">Great dodecicosidodecahedron</span> Polyhedron with 44 faces

In geometry, the great dodecicosidodecahedron (or great dodekicosidodecahedron) is a nonconvex uniform polyhedron, indexed as U61. It has 44 faces (20 triangles, 12 pentagrams and 12 decagrams), 120 edges and 60 vertices.

<span class="mw-page-title-main">Small icosicosidodecahedron</span> Polyhedron

In geometry, the small icosicosidodecahedron (or small icosified icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U31. It has 52 faces (20 triangles, 12 pentagrams, and 20 hexagons), 120 edges, and 60 vertices.

<span class="mw-page-title-main">Ditrigonal dodecadodecahedron</span> Polyhedron with 24 faces

In geometry, the ditrigonal dodecadodecahedron (or ditrigonary dodecadodecahedron) is a nonconvex uniform polyhedron, indexed as U41. It has 24 faces (12 pentagons and 12 pentagrams), 60 edges, and 20 vertices. It has extended Schläfli symbol b{5,52}, as a blended great dodecahedron, and Coxeter diagram . It has 4 Schwarz triangle equivalent constructions, for example Wythoff symbol 3 | 53 5, and Coxeter diagram .

<span class="mw-page-title-main">Great dodecahemidodecahedron</span> Polyhedron with 18 faces

In geometry, the great dodecahemidodecahedron is a nonconvex uniform polyhedron, indexed as U70. It has 18 faces (12 pentagrams and 6 decagrams), 60 edges, and 30 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Small dodecahemicosahedron</span> Polyhedron with 22 faces

In geometry, the small dodecahemicosahedron (or great dodecahemiicosahedron) is a nonconvex uniform polyhedron, indexed as U62. It has 22 faces (12 pentagrams and 10 hexagons), 60 edges, and 30 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Great dodecahemicosahedron</span> Polyhedron with 22 faces

In geometry, the great dodecahemicosahedron (or small dodecahemiicosahedron) is a nonconvex uniform polyhedron, indexed as U65. It has 22 faces (12 pentagons and 10 hexagons), 60 edges, and 30 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Small ditrigonal dodecicosidodecahedron</span> Polyhedron with 44 faces

In geometry, the small ditrigonal dodecicosidodecahedron (or small dodekified icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U43. It has 44 faces (20 triangles, 12 pentagrams and 12 decagons), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Nonconvex great rhombicosidodecahedron</span> Polyhedron with 62 faces

In geometry, the nonconvex great rhombicosidodecahedron is a nonconvex uniform polyhedron, indexed as U67. It has 62 faces (20 triangles, 30 squares and 12 pentagrams), 120 edges, and 60 vertices. It is also called the quasirhombicosidodecahedron. It is given a Schläfli symbol rr{53,3}. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Great dodecicosahedron</span> Polyhedron with 32 faces

In geometry, the great dodecicosahedron (or great dodekicosahedron) is a nonconvex uniform polyhedron, indexed as U63. It has 32 faces (20 hexagons and 12 decagrams), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Great rhombidodecahedron</span> Polyhedron with 42 faces

In geometry, the great rhombidodecahedron is a nonconvex uniform polyhedron, indexed as U73. It has 42 faces (30 squares, 12 decagrams), 120 edges and 60 vertices. Its vertex figure is a crossed quadrilateral.

References

  1. Maeder, Roman. "71: great icosihemidodecahedron". MathConsult.