Quadrilateral | |
---|---|
Edges and vertices | 4 |
Schläfli symbol | {4} (for square) |
Area | various methods; see below |
Internal angle (degrees) | 90° (for square and rectangle) |
In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons (e.g. pentagon). Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as . [1]
Quadrilaterals are either simple (not self-intersecting), or complex (self-intersecting, or crossed). Simple quadrilaterals are either convex or concave.
The interior angles of a simple (and planar) quadrilateral ABCD add up to 360 degrees, that is [1]
This is a special case of the n-gon interior angle sum formula: S = (n − 2) × 180° (here, n=4). [2]
All non-self-crossing quadrilaterals tile the plane, by repeated rotation around the midpoints of their edges. [3]
Any quadrilateral that is not self-intersecting is a simple quadrilateral.
In a convex quadrilateral all interior angles are less than 180°, and the two diagonals both lie inside the quadrilateral.
In a concave quadrilateral, one interior angle is bigger than 180°, and one of the two diagonals lies outside the quadrilateral.
A self-intersecting quadrilateral is called variously a cross-quadrilateral, crossed quadrilateral, butterfly quadrilateral or bow-tie quadrilateral. In a crossed quadrilateral, the four "interior" angles on either side of the crossing (two acute and two reflex, all on the left or all on the right as the figure is traced out) add up to 720°. [10]
The two diagonals of a convex quadrilateral are the line segments that connect opposite vertices.
The two bimedians of a convex quadrilateral are the line segments that connect the midpoints of opposite sides. [12] They intersect at the "vertex centroid" of the quadrilateral (see § Remarkable points and lines in a convex quadrilateral below).
The four maltitudes of a convex quadrilateral are the perpendiculars to a side—through the midpoint of the opposite side. [13]
There are various general formulas for the area K of a convex quadrilateral ABCD with sides a = AB, b = BC, c = CD and d = DA.
The area can be expressed in trigonometric terms as [14]
where the lengths of the diagonals are p and q and the angle between them is θ. [15] In the case of an orthodiagonal quadrilateral (e.g. rhombus, square, and kite), this formula reduces to since θ is 90°.
The area can be also expressed in terms of bimedians as [16]
where the lengths of the bimedians are m and n and the angle between them is φ.
Bretschneider's formula [17] [14] expresses the area in terms of the sides and two opposite angles:
where the sides in sequence are a, b, c, d, where s is the semiperimeter, and A and C are two (in fact, any two) opposite angles. This reduces to Brahmagupta's formula for the area of a cyclic quadrilateral—when A + C = 180°.
Another area formula in terms of the sides and angles, with angle C being between sides b and c, and A being between sides a and d, is
In the case of a cyclic quadrilateral, the latter formula becomes
In a parallelogram, where both pairs of opposite sides and angles are equal, this formula reduces to
Alternatively, we can write the area in terms of the sides and the intersection angle θ of the diagonals, as long θ is not 90°: [18]
In the case of a parallelogram, the latter formula becomes
Another area formula including the sides a, b, c, d is [16]
where x is the distance between the midpoints of the diagonals, and φ is the angle between the bimedians.
The last trigonometric area formula including the sides a, b, c, d and the angle α (between a and b) is: [19]
which can also be used for the area of a concave quadrilateral (having the concave part opposite to angle α), by just changing the first sign + to -.
The following two formulas express the area in terms of the sides a, b, c and d, the semiperimeter s, and the diagonals p, q:
The first reduces to Brahmagupta's formula in the cyclic quadrilateral case, since then pq = ac + bd.
The area can also be expressed in terms of the bimedians m, n and the diagonals p, q:
In fact, any three of the four values m, n, p, and q suffice for determination of the area, since in any quadrilateral the four values are related by [24] : p. 126 The corresponding expressions are: [25]
if the lengths of two bimedians and one diagonal are given, and [25]
if the lengths of two diagonals and one bimedian are given.
The area of a quadrilateral ABCD can be calculated using vectors. Let vectors AC and BD form the diagonals from A to C and from B to D. The area of the quadrilateral is then
which is half the magnitude of the cross product of vectors AC and BD. In two-dimensional Euclidean space, expressing vector AC as a free vector in Cartesian space equal to (x1,y1) and BD as (x2,y2), this can be rewritten as:
In the following table it is listed if the diagonals in some of the most basic quadrilaterals bisect each other, if their diagonals are perpendicular, and if their diagonals have equal length. [26] The list applies to the most general cases, and excludes named subsets.
Quadrilateral | Bisecting diagonals | Perpendicular diagonals | Equal diagonals |
---|---|---|---|
Trapezoid | No | See note 1 | No |
Isosceles trapezoid | No | See note 1 | Yes |
Parallelogram | Yes | No | No |
Kite | See note 2 | Yes | See note 2 |
Rectangle | Yes | No | Yes |
Rhombus | Yes | Yes | No |
Square | Yes | Yes | Yes |
The lengths of the diagonals in a convex quadrilateral ABCD can be calculated using the law of cosines on each triangle formed by one diagonal and two sides of the quadrilateral. Thus
and
Other, more symmetric formulas for the lengths of the diagonals, are [27]
and
In any convex quadrilateral ABCD, the sum of the squares of the four sides is equal to the sum of the squares of the two diagonals plus four times the square of the line segment connecting the midpoints of the diagonals. Thus
where x is the distance between the midpoints of the diagonals. [24] : p.126 This is sometimes known as Euler's quadrilateral theorem and is a generalization of the parallelogram law.
The German mathematician Carl Anton Bretschneider derived in 1842 the following generalization of Ptolemy's theorem, regarding the product of the diagonals in a convex quadrilateral [28]
This relation can be considered to be a law of cosines for a quadrilateral. In a cyclic quadrilateral, where A + C = 180°, it reduces to pq = ac + bd. Since cos (A + C) ≥ −1, it also gives a proof of Ptolemy's inequality.
If X and Y are the feet of the normals from B and D to the diagonal AC = p in a convex quadrilateral ABCD with sides a = AB, b = BC, c = CD, d = DA, then [29] : p.14
In a convex quadrilateral ABCD with sides a = AB, b = BC, c = CD, d = DA, and where the diagonals intersect at E,
where e = AE, f = BE, g = CE, and h = DE. [30]
The shape and size of a convex quadrilateral are fully determined by the lengths of its sides in sequence and of one diagonal between two specified vertices. The two diagonals p, q and the four side lengths a, b, c, d of a quadrilateral are related [14] by the Cayley-Menger determinant, as follows:
The internal angle bisectors of a convex quadrilateral either form a cyclic quadrilateral [24] : p.127 (that is, the four intersection points of adjacent angle bisectors are concyclic) or they are concurrent. In the latter case the quadrilateral is a tangential quadrilateral.
In quadrilateral ABCD, if the angle bisectors of A and C meet on diagonal BD, then the angle bisectors of B and D meet on diagonal AC. [31]
The bimedians of a quadrilateral are the line segments connecting the midpoints of the opposite sides. The intersection of the bimedians is the centroid of the vertices of the quadrilateral. [14]
The midpoints of the sides of any quadrilateral (convex, concave or crossed) are the vertices of a parallelogram called the Varignon parallelogram. It has the following properties:
The two bimedians in a quadrilateral and the line segment joining the midpoints of the diagonals in that quadrilateral are concurrent and are all bisected by their point of intersection. [24] : p.125
In a convex quadrilateral with sides a, b, c and d, the length of the bimedian that connects the midpoints of the sides a and c is
where p and q are the length of the diagonals. [33] The length of the bimedian that connects the midpoints of the sides b and d is
Hence [24] : p.126
This is also a corollary to the parallelogram law applied in the Varignon parallelogram.
The lengths of the bimedians can also be expressed in terms of two opposite sides and the distance x between the midpoints of the diagonals. This is possible when using Euler's quadrilateral theorem in the above formulas. Whence [23]
and
Note that the two opposite sides in these formulas are not the two that the bimedian connects.
In a convex quadrilateral, there is the following dual connection between the bimedians and the diagonals: [29]
The four angles of a simple quadrilateral ABCD satisfy the following identities: [34]
and
Also, [35]
In the last two formulas, no angle is allowed to be a right angle, since tan 90° is not defined.
Let , , , be the sides of a convex quadrilateral, is the semiperimeter, and and are opposite angles, then [36]
and
We can use these identities to derive the Bretschneider's Formula.
If a convex quadrilateral has the consecutive sides a, b, c, d and the diagonals p, q, then its area K satisfies [37]
From Bretschneider's formula it directly follows that the area of a quadrilateral satisfies
with equality if and only if the quadrilateral is cyclic or degenerate such that one side is equal to the sum of the other three (it has collapsed into a line segment, so the area is zero).
Also,
with equality for a bicentric quadrilateral or a rectangle.
The area of any quadrilateral also satisfies the inequality [38]
Denoting the perimeter as L, we have [38] : p.114
with equality only in the case of a square.
The area of a convex quadrilateral also satisfies
for diagonal lengths p and q, with equality if and only if the diagonals are perpendicular.
Let a, b, c, d be the lengths of the sides of a convex quadrilateral ABCD with the area K and diagonals AC = p, BD = q. Then [39]
Let a, b, c, d be the lengths of the sides of a convex quadrilateral ABCD with the area K, then the following inequality holds: [40]
A corollary to Euler's quadrilateral theorem is the inequality
where equality holds if and only if the quadrilateral is a parallelogram.
Euler also generalized Ptolemy's theorem, which is an equality in a cyclic quadrilateral, into an inequality for a convex quadrilateral. It states that
where there is equality if and only if the quadrilateral is cyclic. [24] : p.128–129 This is often called Ptolemy's inequality.
In any convex quadrilateral the bimedians m, n and the diagonals p, q are related by the inequality
with equality holding if and only if the diagonals are equal. [41] : Prop.1 This follows directly from the quadrilateral identity
The sides a, b, c, and d of any quadrilateral satisfy [42] : p.228, #275
and [42] : p.234, #466
Among all quadrilaterals with a given perimeter, the one with the largest area is the square. This is called the isoperimetric theorem for quadrilaterals. It is a direct consequence of the area inequality [38] : p.114
where K is the area of a convex quadrilateral with perimeter L. Equality holds if and only if the quadrilateral is a square. The dual theorem states that of all quadrilaterals with a given area, the square has the shortest perimeter.
The quadrilateral with given side lengths that has the maximum area is the cyclic quadrilateral. [43]
Of all convex quadrilaterals with given diagonals, the orthodiagonal quadrilateral has the largest area. [38] : p.119 This is a direct consequence of the fact that the area of a convex quadrilateral satisfies
where θ is the angle between the diagonals p and q. Equality holds if and only if θ = 90°.
If P is an interior point in a convex quadrilateral ABCD, then
From this inequality it follows that the point inside a quadrilateral that minimizes the sum of distances to the vertices is the intersection of the diagonals. Hence that point is the Fermat point of a convex quadrilateral. [44] : p.120
The centre of a quadrilateral can be defined in several different ways. The "vertex centroid" comes from considering the quadrilateral as being empty but having equal masses at its vertices. The "side centroid" comes from considering the sides to have constant mass per unit length. The usual centre, called just centroid (centre of area) comes from considering the surface of the quadrilateral as having constant density. These three points are in general not all the same point. [45]
The "vertex centroid" is the intersection of the two bimedians. [46] As with any polygon, the x and y coordinates of the vertex centroid are the arithmetic means of the x and y coordinates of the vertices.
The "area centroid" of quadrilateral ABCD can be constructed in the following way. Let Ga, Gb, Gc, Gd be the centroids of triangles BCD, ACD, ABD, ABC respectively. Then the "area centroid" is the intersection of the lines GaGc and GbGd. [47]
In a general convex quadrilateral ABCD, there are no natural analogies to the circumcenter and orthocenter of a triangle. But two such points can be constructed in the following way. Let Oa, Ob, Oc, Od be the circumcenters of triangles BCD, ACD, ABD, ABC respectively; and denote by Ha, Hb, Hc, Hd the orthocenters in the same triangles. Then the intersection of the lines OaOc and ObOd is called the quasicircumcenter, and the intersection of the lines HaHc and HbHd is called the quasiorthocenter of the convex quadrilateral. [47] These points can be used to define an Euler line of a quadrilateral. In a convex quadrilateral, the quasiorthocenter H, the "area centroid" G, and the quasicircumcenter O are collinear in this order, and HG = 2GO. [47]
There can also be defined a quasinine-point centerE as the intersection of the lines EaEc and EbEd, where Ea, Eb, Ec, Ed are the nine-point centers of triangles BCD, ACD, ABD, ABC respectively. Then E is the midpoint of OH. [47]
Another remarkable line in a convex non-parallelogram quadrilateral is the Newton line, which connects the midpoints of the diagonals, the segment connecting these points being bisected by the vertex centroid. One more interesting line (in some sense dual to the Newton's one) is the line connecting the point of intersection of diagonals with the vertex centroid. The line is remarkable by the fact that it contains the (area) centroid. The vertex centroid divides the segment connecting the intersection of diagonals and the (area) centroid in the ratio 3:1. [48]
For any quadrilateral ABCD with points P and Q the intersections of AD and BC and AB and CD, respectively, the circles (PAB), (PCD), (QAD), and (QBC) pass through a common point M, called a Miquel point. [49]
For a convex quadrilateral ABCD in which E is the point of intersection of the diagonals and F is the point of intersection of the extensions of sides BC and AD, let ω be a circle through E and F which meets CB internally at M and DA internally at N. Let CA meet ω again at L and let DB meet ω again at K. Then there holds: the straight lines NK and ML intersect at point P that is located on the side AB; the straight lines NL and KM intersect at point Q that is located on the side CD. Points P and Q are called "Pascal points" formed by circle ω on sides AB and CD. [50] [51] [52]
A hierarchical taxonomy of quadrilaterals is illustrated by the figure to the right. Lower classes are special cases of higher classes they are connected to. Note that "trapezoid" here is referring to the North American definition (the British equivalent is a trapezium). Inclusive definitions are used throughout.
A non-planar quadrilateral is called a skew quadrilateral. Formulas to compute its dihedral angles from the edge lengths and the angle between two adjacent edges were derived for work on the properties of molecules such as cyclobutane that contain a "puckered" ring of four atoms. [55] Historically the term gauche quadrilateral was also used to mean a skew quadrilateral. [56] A skew quadrilateral together with its diagonals form a (possibly non-regular) tetrahedron, and conversely every skew quadrilateral comes from a tetrahedron where a pair of opposite edges is removed.
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra.
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle. The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex; the shortest segment between the base and apex is the height. The area of a triangle equals one-half the product of height and base length.
In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as ABCD.
In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.
In geometry, bisection is the division of something into two equal or congruent parts. Usually it involves a bisecting line, also called a bisector. The most often considered types of bisectors are the segment bisector, a line that passes through the midpoint of a given segment, and the angle bisector, a line that passes through the apex of an angle . In three-dimensional space, bisection is usually done by a bisecting plane, also called the bisector.
In plane Euclidean geometry, a rhombus is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhombus is often called a "diamond", after the diamonds suit in playing cards which resembles the projection of an octahedral diamond, or a lozenge, though the former sometimes refers specifically to a rhombus with a 60° angle, and the latter sometimes refers specifically to a rhombus with a 45° angle.
In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral given the lengths of the sides. Its generalized version, Bretschneider's formula, can be used with non-cyclic quadrilateral. Heron's formula can be thought as a special case of the Brahmagupta's formula for triangles.
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.
In geometry, a trapezoid in North American English, or trapezium in British English, is a quadrilateral that has one pair of parallel sides.
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio or with approximately equal to 1.618 or 89/55.
In Euclidean geometry, an isosceles trapezoid is a convex quadrilateral with a line of symmetry bisecting one pair of opposite sides. It is a special case of a trapezoid. Alternatively, it can be defined as a trapezoid in which both legs and both base angles are of equal measure, or as a trapezoid whose diagonals have equal length. Note that a non-rectangular parallelogram is not an isosceles trapezoid because of the second condition, or because it has no line of symmetry. In any isosceles trapezoid, two opposite sides are parallel, and the two other sides are of equal length, and the diagonals have equal length. The base angles of an isosceles trapezoid are equal in measure.
In Euclidean geometry, a square is a regular quadrilateral, which means that it has four straight sides of equal length and four equal angles. It can also be defined as a rectangle with two equal-length adjacent sides. It is the only regular polygon whose internal angle, central angle, and external angle are all equal (90°). A square with vertices ABCD would be denoted ABCD.
In geometry, Bretschneider's formula is a mathematical expression for the area of a general quadrilateral. It works on both convex and concave quadrilaterals, whether it is cyclic or not. The formula also works on crossed quadrilaterals provided that directed angles are used.
In Euclidean geometry, a tangential quadrilateral or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals, circumscribing quadrilaterals, and circumscriptible quadrilaterals. Tangential quadrilaterals are a special case of tangential polygons.
In Euclidean geometry, Varignon's theorem holds that the midpoints of the sides of an arbitrary quadrilateral form a parallelogram, called the Varignon parallelogram. It is named after Pierre Varignon, whose proof was published posthumously in 1731.
In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and centers of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.
In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other.
In Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral. It has also been called an exscriptible quadrilateral. The circle is called its excircle, its radius the exradius and its center the excenter. The excenter lies at the intersection of six angle bisectors. These are the internal angle bisectors at two opposite vertex angles, the external angle bisectors at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect. The ex-tangential quadrilateral is closely related to the tangential quadrilateral.
In Euclidean geometry, an equidiagonal quadrilateral is a convex quadrilateral whose two diagonals have equal length. Equidiagonal quadrilaterals were important in ancient Indian mathematics, where quadrilaterals were classified first according to whether they were equidiagonal and then into more specialized types.
In Euclidean geometry, a right kite is a kite that can be inscribed in a circle. That is, it is a kite with a circumcircle. Thus the right kite is a convex quadrilateral and has two opposite right angles. If there are exactly two right angles, each must be between sides of different lengths. All right kites are bicentric quadrilaterals, since all kites have an incircle. One of the diagonals divides the right kite into two right triangles and is also a diameter of the circumcircle.
{{cite web}}
: CS1 maint: archived copy as title (link)