Pentadecagon

Last updated
Regular pentadecagon
Regular polygon 15 annotated.svg
A regular pentadecagon
Type Regular polygon
Edges and vertices 15
Schläfli symbol {15}
Coxeter–Dynkin diagrams CDel node 1.pngCDel 15.pngCDel node.png
Symmetry group Dihedral (D15), order 2×15
Internal angle (degrees)156°
Properties Convex, cyclic, equilateral, isogonal, isotoxal

In geometry, a pentadecagon or pentakaidecagon or 15-gon is a fifteen-sided polygon.

Contents

Regular pentadecagon

A regular pentadecagon is represented by Schläfli symbol {15}.

A regular pentadecagon has interior angles of 156°, and with a side length a, has an area given by

Uses

3.10.15 vertex.png
A regular triangle, decagon, and pentadecagon can completely fill a plane vertex. However, due to the triangle's odd number of sides, the figures cannot alternate around the triangle, so the vertex cannot produce a semiregular tiling.

Construction

As 15 = 3 × 5, a product of distinct Fermat primes, a regular pentadecagon is constructible using compass and straightedge: The following constructions of regular pentadecagons with given circumcircle are similar to the illustration of the proposition XVI in Book IV of Euclid's Elements. [1]

Regular Pentadecagon Inscribed in a Circle.gif

Compare the construction according Euclid in this image: Pentadecagon

In the construction for given circumcircle: is a side of equilateral triangle and is a side of a regular pentagon. [2] The point divides the radius in golden ratio:

Compared with the first animation (with green lines) are in the following two images the two circular arcs (for angles 36° and 24°) rotated 90° counterclockwise shown. They do not use the segment , but rather they use segment as radius for the second circular arc (angle 36°).

01-Funfzehneck.svg 01-FunfzehneckAnimation.gif

A compass and straightedge construction for a given side length. The construction is nearly equal to that of the pentagon at a given side, then also the presentation is succeed by extension one side and it generates a segment, here which is divided according to the golden ratio:

Circumradius Side length Angle

01-Funfzehneck-Seite.svg
Construction for a given side length
01-FunfzehneckSeite-Animation.gif
Construction for a given side length as animation

Symmetry

The symmetries of a regular pentadecagon as shown with colors on edges and vertices. Lines of reflections are blue. Gyrations are given as numbers in the center. Vertices are colored by their symmetry positions. Symmetries of pentadecagon.png
The symmetries of a regular pentadecagon as shown with colors on edges and vertices. Lines of reflections are blue. Gyrations are given as numbers in the center. Vertices are colored by their symmetry positions.

The regular pentadecagon has Dih15 dihedral symmetry, order 30, represented by 15 lines of reflection. Dih15 has 3 dihedral subgroups: Dih5, Dih3, and Dih1. And four more cyclic symmetries: Z15, Z5, Z3, and Z1, with Zn representing π/n radian rotational symmetry.

On the pentadecagon, there are 8 distinct symmetries. John Conway labels these symmetries with a letter and order of the symmetry follows the letter. [3] He gives r30 for the full reflective symmetry, Dih15. He gives d (diagonal) with reflection lines through vertices, p with reflection lines through edges (perpendicular), and for the odd-sided pentadecagon i with mirror lines through both vertices and edges, and g for cyclic symmetry. a1 labels no symmetry.

These lower symmetries allows degrees of freedoms in defining irregular pentadecagons. Only the g15 subgroup has no degrees of freedom but can seen as directed edges.

Pentadecagrams

There are three regular star polygons: {15/2}, {15/4}, {15/7}, constructed from the same 15 vertices of a regular pentadecagon, but connected by skipping every second, fourth, or seventh vertex respectively.

There are also three regular star figures: {15/3}, {15/5}, {15/6}, the first being a compound of three pentagons, the second a compound of five equilateral triangles, and the third a compound of three pentagrams.

The compound figure {15/3} can be loosely seen as the two-dimensional equivalent of the 3D compound of five tetrahedra.

Picture Regular star polygon 15-2.svg
{15/2}
CDel node 1.pngCDel 15.pngCDel rat.pngCDel 2x.pngCDel node.png
Regular star figure 3(5,1).svg
{15/3} or 3{5}
Regular star polygon 15-4.svg
{15/4}
CDel node 1.pngCDel 15.pngCDel rat.pngCDel 4.pngCDel node.png
Regular star figure 5(3,1).svg
{15/5} or 5{3}
Regular star figure 3(5,2).svg
{15/6} or 3{5/2}
Regular star polygon 15-7.svg
{15/7}
CDel node 1.pngCDel 15.pngCDel rat.pngCDel 7.pngCDel node.png
Interior angle 132°108°84°60°36°12°

Isogonal pentadecagons

Deeper truncations of the regular pentadecagon and pentadecagrams can produce isogonal (vertex-transitive) intermediate star polygon forms with equal spaced vertices and two edge lengths. [4]

Petrie polygons

The regular pentadecagon is the Petrie polygon for some higher-dimensional polytopes, projected in a skew orthogonal projection:

14-simplex t0.svg
14-simplex (14D)

See also

Related Research Articles

Regular icosahedron Platonic solid

In geometry, a regular icosahedron is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces.

Tetrahedron Polyhedron with 4 faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra and the only one that has fewer than 5 faces.

Triangle Shape with three sides

A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, and C is denoted .

Hexagon Shape with six sides

In geometry, a hexagon is a six-sided polygon or 6-gon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.

Snub dodecahedron

In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

Octagon Polygon shape with eight sides

In geometry, an octagon is an eight-sided polygon or 8-gon.

Incenter Center of the inscribed circle of a triangle

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

Decagon shape with ten sides

In geometry, a decagon is a ten-sided polygon or 10-gon. The total sum of the interior angles of a simple decagon is 1440°.

In Euclidean geometry, a regular polygon is a polygon that is equiangular and equilateral. Regular polygons may be either convex or star. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon, if the edge length is fixed.

Icosagon Polygon with 20 edges

In geometry, an icosagon or 20-gon is a twenty-sided polygon. The sum of any icosagon's interior angles is 3240 degrees.

Dodecagon Polygon with 12 edges

In geometry, a dodecagon or 12-gon is any twelve-sided polygon.

Tridecagon Polygon with 13 edges

In geometry, a tridecagon or triskaidecagon or 13-gon is a thirteen-sided polygon.

Square Regular quadrilateral

In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles. It can also be defined as a rectangle in which two adjacent sides have equal length. A square with vertices ABCD would be denoted ABCD.

Triacontagon Polygon with 30 edges

In geometry, a triacontagon or 30-gon is a thirty-sided polygon. The sum of any triacontagon's interior angles is 5040 degrees.

Morleys trisector theorem 3 intersections of any triangles adjacent angle trisectors form an equilateral triangle

In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all of the trisectors are intersected, one obtains four other equilateral triangles.

Circumscribed circle Circle that passes through all the vertices of a polygon

In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.

Hexadecagon Polygon with 16 edges

In mathematics, a hexadecagon is a sixteen-sided polygon.

Pentagon shape with five sides

In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

Icositetragon Polygon with 24 edges

In geometry, an icositetragon or 24-gon is a twenty-four-sided polygon. The sum of any icositetragon's interior angles is 3960 degrees.

Planigon

In geometry, a planigon is a convex polygon that can fill the plane with only copies of itself. In the Euclidean plane there are 3 regular planigons; equilateral triangle, squares, and regular hexagons; and 8 semiregular planigons; and 4 demiregular planigons which can tile the plane only with other planigons.

References

  1. Dunham, William (1991). Journey through Genius - The Great Theorems of Mathematics (PDF). Penguin. p. 65. Retrieved 2015-11-12 via the University of Kentucky College of Arts & Sciences Mathematics.
  2. Kepler, Johannes, translated and initiated by MAX CASPAR 1939. WELT-HARMONIK (in German). p. 44. Retrieved 2015-12-07 via Google Books. Retrieved on June 5, 2017
  3. John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN   978-1-56881-220-5 (Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon pp. 275-278)
  4. The Lighter Side of Mathematics: Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History, (1994), Metamorphoses of polygons, Branko Grünbaum