A magic polygon is a polygonal magic graph with integers on its vertices.
A magic polygon, also called a perimeter magic polygon, [1] [2] is a polygon with an integers on its sides that all add up to a magic constant. [3] [4] It is where positive integers (from 1 to N) on a k-sided polygon add up to a constant. [1] Magic polygons are a generalization of other magic shapes [5] such as magic triangles. [6]
Victoria Jakicic and Rachelle Bouchat defined magic polygons as n-sided regular polygons with 2n+1 nodes such that the sum of the three nodes are equal. In their definition, a 3 × 3 magic square can be viewed as a magic 4-gon. There are no magic odd-gons with this definition. [7]
Danniel Dias Augusto and Josimar da Silva defined the magic polygon P(n,k) as a set of vertices of concentric n-gon and a center point. In this definition, magic polygons of Victoria Jakicic and Rachelle Bouchat can be viewed as P(n,2) magic polygons. They also defined degenerated magic polygons. [8]
In geometry, a polygon is a plane figure made up of line segments connected to form a closed polygonal chain.
In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .
In solid geometry, a face is a flat surface that forms part of the boundary of a solid object; a three-dimensional solid bounded exclusively by faces is a polyhedron.
In geometry, a star polygon is a type of non-convex polygon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, certain notable ones can arise through truncation operations on regular simple or star polygons.
In Euclidean geometry, a regular polygon is a polygon that is direct equiangular and equilateral. Regular polygons may be either convex, star or skew. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon, if the edge length is fixed.
In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.
In geometry, a set of points are said to be concyclic if they lie on a common circle. A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle.
In geometry, a dodecagon, or 12-gon, is any twelve-sided polygon.
In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon. Equivalently, a polygon is convex if every line that does not contain any edge intersects the polygon in at most two points.
In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An incidence structure is what is obtained when all other concepts are removed and all that remains is the data about which points lie on which lines. Even with this severe limitation, theorems can be proved and interesting facts emerge concerning this structure. Such fundamental results remain valid when additional concepts are added to form a richer geometry. It sometimes happens that authors blur the distinction between a study and the objects of that study, so it is not surprising to find that some authors refer to incidence structures as incidence geometries.
Elementary mathematics, also known as primary or secondary school mathematics, is the study of mathematics topics that are commonly taught at the primary or secondary school levels around the world. It includes a wide range of mathematical concepts and skills, including number sense, algebra, geometry, measurement, and data analysis. These concepts and skills form the foundation for more advanced mathematical study and are essential for success in many fields and everyday life. The study of elementary mathematics is a crucial part of a student's education and lays the foundation for future academic and career success.
In Euclidean geometry, an equiangular polygon is a polygon whose vertex angles are equal. If the lengths of the sides are also equal then it is a regular polygon. Isogonal polygons are equiangular polygons which alternate two edge lengths.
In geometry, a bigon, digon, or a 2-gon, is a polygon with two sides (edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space. It may also be viewed as a representation of a graph with two vertices, see "Generalized polygon".
In geometry, a Robbins pentagon is a cyclic pentagon whose side lengths and area are all rational numbers.
In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.
In mathematics, an associahedronKn is an (n – 2)-dimensional convex polytope in which each vertex corresponds to a way of correctly inserting opening and closing parentheses in a string of n letters, and the edges correspond to single application of the associativity rule. Equivalently, the vertices of an associahedron correspond to the triangulations of a regular polygon with n + 1 sides and the edges correspond to edge flips in which a single diagonal is removed from a triangulation and replaced by a different diagonal. Associahedra are also called Stasheff polytopes after the work of Jim Stasheff, who rediscovered them in the early 1960s after earlier work on them by Dov Tamari.
In mathematics, the pentagram map is a discrete dynamical system on the moduli space of polygons in the projective plane. The pentagram map takes a given polygon, finds the intersections of the shortest diagonals of the polygon, and constructs a new polygon from these intersections. Richard Schwartz introduced the pentagram map for a general polygon in a 1992 paper though it seems that the special case, in which the map is defined for pentagons only, goes back to an 1871 paper of Alfred Clebsch and a 1945 paper of Theodore Motzkin. The pentagram map is similar in spirit to the constructions underlying Desargues' theorem and Poncelet's porism. It echoes the rationale and construction underlying a conjecture of Branko Grünbaum concerning the diagonals of a polygon.
In geometry, the midpoint polygon of a polygon P is the polygon whose vertices are the midpoints of the edges of P. It is sometimes called the Kasner polygon after Edward Kasner, who termed it the inscribed polygon "for brevity".
In geometry, the Petr–Douglas–Neumann theorem is a result concerning arbitrary planar polygons. The theorem asserts that a certain procedure when applied to an arbitrary polygon always yields a regular polygon having the same number of sides as the initial polygon. The theorem was first published by Karel Petr (1868–1950) of Prague in 1905 and in 1908. It was independently rediscovered by Jesse Douglas (1897–1965) in 1940 and also by B H Neumann (1909–2002) in 1941. The naming of the theorem as Petr–Douglas–Neumann theorem, or as the PDN-theorem for short, is due to Stephen B Gray. It has also been called Douglas's theorem, the Douglas–Neumann theorem, the Napoleon–Douglas–Neumann theorem and Petr's theorem.
A magic triangle is a magic arrangement of the integers from 1 to n to triangular figure.
Magic polygon math.