Magic series

Last updated

A magic series is a set of distinct positive integers which add up to the magic constant of a magic square and a magic cube, thus potentially making up lines in magic tesseracts.

So, in an n×n magic square using the numbers from 1 to n2, a magic series is a set of n distinct numbers adding up to n(n2 +1)/2. For n = 2, there are just two magic series, 1+4 and 2+3. The eight magic series when n = 3 all appear in the rows, columns and diagonals of a 3×3 magic square.

Maurice Kraitchik gave the number of magic series up to n = 7 in Mathematical Recreations in 1942 (sequence A052456 in the OEIS ). In 2002, Henry Bottomley extended this up to n = 36 and independently Walter Trump up to n = 32. In 2005, Trump extended this to n = 54 (over 2 × 10111) while Bottomley gave an experimental approximation for the numbers of magic series:

In July 2006, Robert Gerbicz extended this sequence up to n =150.

In 2013 Dirk Kinnaes was able to exploit his insight that the magic series could be related to the volume of a polytope. Trump used this new approach to extend the sequence up to n =1000. [1]

Mike Quist showed that the exact second-order count has a multiplicative factor of equivalent to a denominator of [2]

Richard Schroeppel in 1973 published the complete enumeration of the order 5 magic squares at 275,305,224. This recent magic series work gives hope that the relationship between the magic series and the magic square may provide an exact count for order 6 or order 7 magic squares. Consider an intermediate structure that lies in complexity between the magic series and the magic square. It might be described as an amalgamation of 4 magic series that have only one unique common integer. This structure forms the two major diagonals and the central row and column for an odd order magic square. Building blocks such as these could be the way forward.

Related Research Articles

In geometry, a polygon is a plane figure that is described by a finite number of straight line segments connected to form a closed polygonal chain. The bounded plane region, the bounding circuit, or the two together, may be called a polygon.

Taylor series Mathematical approximation of a function

In mathematics, the Taylor series of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715.

<i>p</i>-adic number Number system for a prime p which extends the rationals, defining closeness differently

In mathematics, the p-adic number system for any prime number p extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two p-adic numbers are considered to be close when their difference is divisible by a high power of p: the higher the power, the closer they are. This property enables p-adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles.

Eulers totient function Gives the number of integers relatively prime to its input

In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ kn for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.

Fourier series Decomposition of periodic functions into sums of simpler sinusoidal forms

In mathematics, a Fourier series is a periodic function composed of harmonically related sinusoids combined by a weighted summation. With appropriate weights, one cycle of the summation can be made to approximate an arbitrary function in that interval. As such, the summation is a synthesis of another function. The discrete-time Fourier transform is an example of Fourier series. The process of deriving weights that describe a given function is a form of Fourier analysis. For functions on unbounded intervals, the analysis and synthesis analogies are Fourier transform and inverse transform.

Eulers constant Relates logarithm and harmonic series

Euler's constant is a mathematical constant usually denoted by the lowercase Greek letter gamma.

In Euclidean geometry, a regular polygon is a polygon that is equiangular and equilateral. Regular polygons may be either convex or star. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon, if the edge length is fixed.

Square root of 2 Unique positive real number which when multiplied by itself gives 2

The square root of 2 is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as or , and is an algebraic number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.

A unit fraction is a rational number written as a fraction where the numerator is one and the denominator is a positive integer. A unit fraction is therefore the reciprocal of a positive integer, 1/n. Examples are 1/1, 1/2, 1/3, 1/4, 1/5, etc.

Double factorial Mathematical function

In mathematics, the double factorial or semifactorial of a number n, denoted by n, is the product of all the integers from 1 up to n that have the same parity as n. That is,

Magic constant

The magic constant or magic sum of a magic square is the sum of numbers in any row, column, or diagonal of the magic square. For example, the magic square shown below has a magic constant of 15. For a normal magic square of order n – that is, a magic square which contains the numbers 1, 2, ..., n2 – the magic constant is .

Eisenstein series, named after German mathematician Gotthold Eisenstein, are particular modular forms with infinite series expansions that may be written down directly. Originally defined for the modular group, Eisenstein series can be generalized in the theory of automorphic forms.

In mathematics, Gauss's constant, denoted by G, is defined as the reciprocal of the arithmetic–geometric mean of 1 and the square root of 2:

Sylvesters sequence Integer sequence in number theory

In number theory, Sylvester's sequence is an integer sequence in which each term of the sequence is the product of the previous terms, plus one. The first few terms of the sequence are

In geodesy, a meridian arc is the curve between two points on the Earth's surface having the same longitude. The term may refer either to a segment of the meridian, or to its length.

<i>n</i>-dimensional sequential move puzzle

The Rubik's Cube is the original and best known of the three-dimensional sequential move puzzles. There have been many virtual implementations of this puzzle in software. It is a natural extension to create sequential move puzzles in more than three dimensions. Although no such puzzle could ever be physically constructed, the rules of how they operate are quite rigorously defined mathematically and are analogous to the rules found in three-dimensional geometry. Hence, they can be simulated by software. As with the mechanical sequential move puzzles, there are records for solvers, although not yet the same degree of competitive organisation.

In convex geometry, the Mahler volume of a centrally symmetric convex body is a dimensionless quantity that is associated with the body and is invariant under linear transformations. It is named after German-English mathematician Kurt Mahler. It is known that the shapes with the largest possible Mahler volume are the balls and solid ellipsoids; this is now known as the Blaschke–Santaló inequality. The still-unsolved Mahler conjecture states that the minimum possible Mahler volume is attained by a hypercube.

Geometric progression

In mathematics, a geometric progression, also known as a geometric sequence, is a sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with common ratio 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with common ratio 1/2.

Ganita Kaumudi is a treatise on mathematics written by Indian mathematician Narayana Pandita in 1356. It was an arithmetical treatise alongside the other algebraic treatise called "Bijganita Vatamsa" by Narayana Pandit. It was written as a commentary on the Līlāvatī by Bhāskara II.

In combinatorial mathematics, probability, and computer science, in the longest alternating subsequence problem, one wants to find a subsequence of a given sequence in which the elements are in alternating order, and in which the sequence is as long as possible.

References

  1. Walter Trump http://www.trump.de/magic-squares/
  2. Quist, Michael (2013). "Asymptotic enumeration of magic series". arXiv: 1306.0616 [math.CO].