Equidiagonal quadrilateral

Last updated
An equidiagonal quadrilateral, showing its equal diagonals, Varignon rhombus, and perpendicular bimedians Equidiagonal quadrilateral.svg
An equidiagonal quadrilateral, showing its equal diagonals, Varignon rhombus, and perpendicular bimedians

In Euclidean geometry, an equidiagonal quadrilateral is a convex quadrilateral whose two diagonals have equal length. Equidiagonal quadrilaterals were important in ancient Indian mathematics, where quadrilaterals were classified first according to whether they were equidiagonal and then into more specialized types. [1]

Contents

Special cases

Examples of equidiagonal quadrilaterals include the isosceles trapezoids, rectangles and squares.

An equidiagonal kite that maximizes the ratio of perimeter to diameter, inscribed in a Reuleaux triangle Reuleaux kite.svg
An equidiagonal kite that maximizes the ratio of perimeter to diameter, inscribed in a Reuleaux triangle

Among all quadrilaterals, the shape that has the greatest ratio of its perimeter to its diameter is an equidiagonal kite with angles π/3, 5π/12, 5π/6, and 5π/12. [2]

Characterizations

A convex quadrilateral is equidiagonal if and only if its Varignon parallelogram, the parallelogram formed by the midpoints of its sides, is a rhombus. An equivalent condition is that the bimedians of the quadrilateral (the diagonals of the Varignon parallelogram) are perpendicular. [3]

A convex quadrilateral with diagonal lengths and and bimedian lengths and is equidiagonal if and only if [4] :Prop.1

Area

The area K of an equidiagonal quadrilateral can easily be calculated if the length of the bimedians m and n are known. A quadrilateral is equidiagonal if and only if [5] :p.19, [4] :Cor.4

This is a direct consequence of the fact that the area of a convex quadrilateral is twice the area of its Varignon parallelogram and that the diagonals in this parallelogram are the bimedians of the quadrilateral. Using the formulas for the lengths of the bimedians, the area can also be expressed in terms of the sides a, b, c, d of the equidiagonal quadrilateral and the distance x between the midpoints of the diagonals as [5] :p.19

Other area formulas may be obtained from setting p = q in the formulas for the area of a convex quadrilateral.

Relation to other types of quadrilaterals

A parallelogram is equidiagonal if and only if it is a rectangle, [6] and a trapezoid is equidiagonal if and only if it is an isosceles trapezoid. The cyclic equidiagonal quadrilaterals are exactly the isosceles trapezoids.

There is a duality between equidiagonal quadrilaterals and orthodiagonal quadrilaterals: a quadrilateral is equidiagonal if and only if its Varignon parallelogram is orthodiagonal (a rhombus), and the quadrilateral is orthodiagonal if and only if its Varignon parallelogram is equidiagonal (a rectangle). [3] Equivalently, a quadrilateral has equal diagonals if and only if it has perpendicular bimedians, and it has perpendicular diagonals if and only if it has equal bimedians. [7] Silvester (2006) gives further connections between equidiagonal and orthodiagonal quadrilaterals, via a generalization of van Aubel's theorem. [8]

Quadrilaterals that are both orthodiagonal and equidiagonal, and in which the diagonals are at least as long as all of the quadrilateral's sides, have the maximum area for their diameter among all quadrilaterals, solving the n = 4 case of the biggest little polygon problem. The square is one such quadrilateral, but there are infinitely many others. Equidiagonal, orthodiagonal quadrilaterals have been referred to as midsquare quadrilaterals [4] :p. 137 because they are the only ones for which the Varignon parallelogram (with vertices at the midpoints of the quadrilateral's sides) is a square. Such a quadrilateral, with successive sides a, b, c, d, has area [4] :Thm.16

A midsquare parallelogram is exactly a square.

Related Research Articles

<span class="mw-page-title-main">Quadrilateral</span> Polygon with four sides and four corners

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .

<span class="mw-page-title-main">Rectangle</span> Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is occasionally used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Parallelogram</span> Quadrilateral with two pairs of parallel sides

In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.

<span class="mw-page-title-main">Bisection</span> Division of something into two equal or congruent parts

In geometry, bisection is the division of something into two equal or congruent parts. Usually it involves a bisecting line, also called a bisector. The most often considered types of bisectors are the segment bisector, a line that passes through the midpoint of a given segment, and the angle bisector, a line that passes through the apex of an angle . In three-dimensional space, bisection is usually done by a bisecting plane, also called the bisector.

<span class="mw-page-title-main">Rhombus</span> Quadrilateral in which all sides have the same length

In plane Euclidean geometry, a rhombus is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhombus is often called a "diamond", after the diamonds suit in playing cards which resembles the projection of an octahedral diamond, or a lozenge, though the former sometimes refers specifically to a rhombus with a 60° angle, and the latter sometimes refers specifically to a rhombus with a 45° angle.

<span class="mw-page-title-main">Cyclic quadrilateral</span> Quadrilateral whose vertices can all fall on a single circle

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

<span class="mw-page-title-main">Trapezoid</span> Convex quadrilateral with at least one pair of parallel sides

In geometry, a trapezoid in North American English, or trapezium in British English, is a quadrilateral that has at least one pair of parallel sides.

<span class="mw-page-title-main">Midpoint</span> Point on a line segment which is equidistant from both endpoints

In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.

<span class="mw-page-title-main">Isosceles trapezoid</span> Trapezoid symmetrical about an axis

In Euclidean geometry, an isosceles trapezoid is a convex quadrilateral with a line of symmetry bisecting one pair of opposite sides. It is a special case of a trapezoid. Alternatively, it can be defined as a trapezoid in which both legs and both base angles are of equal measure, or as a trapezoid whose diagonals have equal length. Note that a non-rectangular parallelogram is not an isosceles trapezoid because of the second condition, or because it has no line of symmetry. In any isosceles trapezoid, two opposite sides are parallel, and the two other sides are of equal length, and the diagonals have equal length. The base angles of an isosceles trapezoid are equal in measure.

<span class="mw-page-title-main">Square</span> Regular quadrilateral

In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles. It can also be defined as a rectangle with two equal-length adjacent sides. It is the only regular polygon whose internal angle, central angle, and external angle are all equal (90°), and whose diagonals are all equal in length. A square with vertices ABCD would be denoted ABCD.

<span class="mw-page-title-main">Antiparallelogram</span> Polygon with four crossed edges of two lengths

In geometry, an antiparallelogram is a type of self-crossing quadrilateral. Like a parallelogram, an antiparallelogram has two opposite pairs of equal-length sides, but these pairs of sides are not in general parallel. Instead, each pair of sides is antiparallel with respect to the other, with sides in the longer pair crossing each other as in a scissors mechanism. Whereas a parallelogram's opposite angles are equal and oriented the same way, an antiparallelogram's are equal but oppositely oriented. Antiparallelograms are also called contraparallelograms or crossed parallelograms.

<span class="mw-page-title-main">British flag theorem</span> On distances from opposite corners to a point inside a rectangle

In Euclidean geometry, the British flag theorem says that if a point P is chosen inside a rectangle ABCD then the sum of the squares of the Euclidean distances from P to two opposite corners of the rectangle equals the sum to the other two opposite corners. As an equation:

<span class="mw-page-title-main">Tangential quadrilateral</span> Polygon whose four sides all touch a circle

In Euclidean geometry, a tangential quadrilateral or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals, circumscribing quadrilaterals, and circumscriptible quadrilaterals. Tangential quadrilaterals are a special case of tangential polygons.

<span class="mw-page-title-main">Varignon's theorem</span> The midpoints of the sides of an arbitrary quadrilateral form a parallelogram

In Euclidean geometry, Varignon's theorem holds that the midpoints of the sides of an arbitrary quadrilateral form a parallelogram, called the Varignon parallelogram. It is named after Pierre Varignon, whose proof was published posthumously in 1731.

<span class="mw-page-title-main">Bicentric quadrilateral</span> Convex, 4-sided shape with an incircle and a circumcircle

In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and centers of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.

<span class="mw-page-title-main">Orthodiagonal quadrilateral</span>

In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other.

<span class="mw-page-title-main">Ex-tangential quadrilateral</span> Convex 4-sided polygon whose sidelines are all tangent to an outside circle

In Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral. It has also been called an exscriptible quadrilateral. The circle is called its excircle, its radius the exradius and its center the excenter. The excenter lies at the intersection of six angle bisectors. These are the internal angle bisectors at two opposite vertex angles, the external angle bisectors at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect. The ex-tangential quadrilateral is closely related to the tangential quadrilateral.

<span class="mw-page-title-main">Tangential trapezoid</span> Trapezoid whose sides are all tangent to the same circle

In Euclidean geometry, a tangential trapezoid, also called a circumscribed trapezoid, is a trapezoid whose four sides are all tangent to a circle within the trapezoid: the incircle or inscribed circle. It is the special case of a tangential quadrilateral in which at least one pair of opposite sides are parallel. As for other trapezoids, the parallel sides are called the bases and the other two sides the legs. The legs can be equal, but they don't have to be.

<span class="mw-page-title-main">Right kite</span> Symmetrical quadrilateral

In Euclidean geometry, a right kite is a kite that can be inscribed in a circle. That is, it is a kite with a circumcircle. Thus the right kite is a convex quadrilateral and has two opposite right angles. If there are exactly two right angles, each must be between sides of different lengths. All right kites are bicentric quadrilaterals, since all kites have an incircle. One of the diagonals divides the right kite into two right triangles and is also a diameter of the circumcircle.

References

  1. Colebrooke, Henry-Thomas (1817), Algebra, with arithmetic and mensuration, from the Sanscrit of Brahmegupta and Bhascara, John Murray, p. 58.
  2. Ball, D.G. (1973), "A generalisation of π", Mathematical Gazette, 57 (402): 298–303, doi:10.2307/3616052 , Griffiths, David; Culpin, David (1975), "Pi-optimal polygons", Mathematical Gazette, 59 (409): 165–175, doi:10.2307/3617699 .
  3. 1 2 de Villiers, Michael (2009), Some Adventures in Euclidean Geometry, Dynamic Mathematics Learning, p. 58, ISBN   9780557102952 .
  4. 1 2 3 4 Josefsson, Martin (2014), "Properties of equidiagonal quadrilaterals", Forum Geometricorum, 14: 129–144.
  5. 1 2 Josefsson, Martin (2013), "Five Proofs of an Area Characterization of Rectangles" (PDF), Forum Geometricorum, 13: 17–21.
  6. Gerdes, Paulus (1988), "On culture, geometrical thinking and mathematics education", Educational Studies in Mathematics, 19 (2): 137–162, doi:10.1007/bf00751229, JSTOR   3482571 .
  7. Josefsson, Martin (2012), "Characterizations of Orthodiagonal Quadrilaterals" (PDF), Forum Geometricorum, 12: 13–25. See in particular Theorem 7 on p. 19.
  8. Silvester, John R. (2006), "Extensions of a theorem of Van Aubel", The Mathematical Gazette, 90 (517): 2–12, JSTOR   3621406 .