Biggest little polygon

Last updated
Biggest little polygon with 6 sides (on the left); on the right the regular polygon with same diameter but lower area. Biggest little polygon.svg
Biggest little polygon with 6 sides (on the left); on the right the regular polygon with same diameter but lower area.

In geometry, the biggest little polygon for a number n is the n-sided polygon that has diameter one (that is, every two of its points are within unit distance of each other) and that has the largest area among all diameter-one n-gons. One non-unique solution when n = 4 is a square, and the solution is a regular polygon when n is an odd number, but the solution is irregular otherwise.

Contents

Quadrilaterals

For n = 4, the area of an arbitrary quadrilateral is given by the formula S = pq sin(θ)/2 where p and q are the two diagonals of the quadrilateral and θ is either of the angles they form with each other. In order for the diameter to be at most 1, both p and q must themselves be at most 1. Therefore, the quadrilateral has largest area when the three factors in the area formula are individually maximized, with p = q = 1 and sin(θ) = 1. The condition that p = q means that the quadrilateral is an equidiagonal quadrilateral (its diagonals have equal length), and the condition that sin(θ) = 1 means that it is an orthodiagonal quadrilateral (its diagonals cross at right angles). The quadrilaterals of this type include the square with unit-length diagonals, which has area 1/2. However, infinitely many other orthodiagonal and equidiagonal quadrilaterals also have diameter 1 and have the same area as the square, so in this case the solution is not unique. [1]

Odd numbers of sides

For odd values of n, it was shown by Karl Reinhardt in 1922 that a regular polygon has largest area among all diameter-one polygons. [2]

Even numbers of sides

In the case n = 6, the unique optimal polygon is not regular. The solution to this case was published in 1975 by Ronald Graham, answering a question posed in 1956 by Hanfried Lenz; [3] it takes the form of an irregular equidiagonal pentagon with an obtuse isosceles triangle attached to one of its sides, with the distance from the apex of the triangle to the opposite pentagon vertex equal to the diagonals of the pentagon. [4] Its area is 0.674981.... (sequence A111969 in the OEIS ), a number that satisfies the equation (although not expressible in radicals due to it having the Galois group S10)

4096 x10 +8192x9  3008x8  30848x7 + 21056x6 + 146496x5  221360x4 + 1232x3 + 144464x2  78488x + 11993 = 0.

Graham conjectured that the optimal solution for the general case of even values of n consists in the same way of an equidiagonal (n  1)-gon with an isosceles triangle attached to one of its sides, its apex at unit distance from the opposite (n  1)-gon vertex. In the case n = 8 this was verified by a computer calculation by Audet et al. [5] Graham's proof that his hexagon is optimal, and the computer proof of the n = 8 case, both involved a case analysis of all possible n-vertex thrackles with straight edges.

The full conjecture of Graham, characterizing the solution to the biggest little polygon problem for all even values of n, was proven in 2007 by Foster and Szabo. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Antiprism</span> Polyhedron with parallel bases connected by triangles

In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.

In geometry, a polygon is a plane figure made up of line segments connected to form a closed polygonal chain.

<span class="mw-page-title-main">Quadrilateral</span> Polygon with four sides and four corners

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .

<span class="mw-page-title-main">Rectangle</span> Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Cyclic quadrilateral</span> Quadrilateral whose vertices can all fall on a single circle

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

In geometry, an equilateral polygon is a polygon which has all sides of the same length. Except in the triangle case, an equilateral polygon does not need to also be equiangular, but if it does then it is a regular polygon. If the number of sides is at least five, an equilateral polygon does not need to be a convex polygon: it could be concave or even self-intersecting.

<span class="mw-page-title-main">Diagonal</span> In geometry a line segment joining two nonconsecutive vertices of a polygon or polyhedron

In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word diagonal derives from the ancient Greek διαγώνιος diagonios, "from angle to angle" ; it was used by both Strabo and Euclid to refer to a line connecting two vertices of a rhombus or cuboid, and later adopted into Latin as diagonus.

<span class="mw-page-title-main">Concyclic points</span> Points on a common circle

In geometry, a set of points are said to be concyclic if they lie on a common circle. A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle.

<span class="mw-page-title-main">Equiangular polygon</span> Polygon with equally angled vertices

In Euclidean geometry, an equiangular polygon is a polygon whose vertex angles are equal. If the lengths of the sides are also equal then it is a regular polygon. Isogonal polygons are equiangular polygons which alternate two edge lengths.

<span class="mw-page-title-main">Happy ending problem</span> Five coplanar points have a subset forming a convex quadrilateral

In mathematics, the "happy ending problem" is the following statement:

<span class="mw-page-title-main">Hexagonal tiling</span> Regular tiling of a two-dimensional space

In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} .

In geometry, a polytope or a tiling is isotoxal or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation, and/or reflection that will move one edge to the other while leaving the region occupied by the object unchanged.

A thrackle is an embedding of a graph in the plane in which each edge is a Jordan arc and every pair of edges meet exactly once. Edges may either meet at a common endpoint, or, if they have no endpoints in common, at a point in their interiors. In the latter case, they must cross at their intersection point: the intersection must be transverse.

<span class="mw-page-title-main">Varignon's theorem</span> The midpoints of the sides of an arbitrary quadrilateral form a parallelogram

In Euclidean geometry, Varignon's theorem holds that the midpoints of the sides of an arbitrary quadrilateral form a parallelogram, called the Varignon parallelogram. It is named after Pierre Varignon, whose proof was published posthumously in 1731.

<span class="mw-page-title-main">Associahedron</span> Convex polytope of parenthesizations

In mathematics, an associahedronKn is an (n – 2)-dimensional convex polytope in which each vertex corresponds to a way of correctly inserting opening and closing parentheses in a string of n letters, and the edges correspond to single application of the associativity rule. Equivalently, the vertices of an associahedron correspond to the triangulations of a regular polygon with n + 1 sides and the edges correspond to edge flips in which a single diagonal is removed from a triangulation and replaced by a different diagonal. Associahedra are also called Stasheff polytopes after the work of Jim Stasheff, who rediscovered them in the early 1960s after earlier work on them by Dov Tamari.

The largest small octagon is the octagon that has the largest area among all convex octagons with unit diameter. The diameter of a polygon is the length of the longest segment joining two of its vertices. The exact value of the area of the largest small octagon lies between 0.72686845 and 0.72686849, and is approximately 2.8% larger than the area of the regular octagon. This octagon was found in 2002 using global optimization algorithms. The optimal hexagon was found in 1975 by finding the roots of a degree-10 polynomial.

<span class="mw-page-title-main">Orthodiagonal quadrilateral</span>

In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other.

In geometry, the Petr–Douglas–Neumann theorem is a result concerning arbitrary planar polygons. The theorem asserts that a certain procedure when applied to an arbitrary polygon always yields a regular polygon having the same number of sides as the initial polygon. The theorem was first published by Karel Petr (1868–1950) of Prague in 1908. It was independently rediscovered by Jesse Douglas (1897–1965) in 1940 and also by B H Neumann (1909–2002) in 1941. The naming of the theorem as Petr–Douglas–Neumann theorem, or as the PDN-theorem for short, is due to Stephen B Gray. It has also been called Douglas's theorem, the Douglas–Neumann theorem, the Napoleon–Douglas–Neumann theorem and Petr's theorem.

<span class="mw-page-title-main">Reinhardt polygon</span> Polygon with many longest diagonals

In geometry, a Reinhardt polygon is an equilateral polygon inscribed in a Reuleaux polygon. As in the regular polygons, each vertex of a Reinhardt polygon participates in at least one defining pair of the diameter of the polygon. Reinhardt polygons with sides exist, often with multiple forms, whenever is not a power of two. Among all polygons with sides, the Reinhardt polygons have the largest possible perimeter for their diameter, the largest possible width for their diameter, and the largest possible width for their perimeter. They are named after Karl Reinhardt, who studied them in 1922.

References

  1. Schäffer, J. J. (1958), "Nachtrag zu Ungelöste Prob. 12", Elemente der Math., 13: 85–86. As cited by Graham (1975).
  2. Reinhardt, K. (1922), "Extremale Polygone gegebenen Durchmessers", Jahresbericht der Deutschen Mathematiker-Vereinigung, 31: 251–270.
  3. Lenz, H. (1956), "Ungelöste Prob. 12", EIemente der Math., 11: 86. As cited by Graham (1975).
  4. Graham, R. L. (1975), "The largest small hexagon" (PDF), Journal of Combinatorial Theory , Series A, 18 (2): 165–170, doi: 10.1016/0097-3165(75)90004-7 .
  5. Audet, Charles; Hansen, Pierre; Messine, Frédéric; Xiong, Junjie (2002), "The largest small octagon", Journal of Combinatorial Theory , Series A, 98 (1): 46–59, doi: 10.1006/jcta.2001.3225 , MR   1897923 .
  6. Foster, Jim; Szabo, Tamas (2007), "Diameter graphs of polygons and the proof of a conjecture of Graham", Journal of Combinatorial Theory , Series A, 114 (8): 1515–1525, doi: 10.1016/j.jcta.2007.02.006 , MR   2360684 .