Tetradecagon

Last updated
Regular tetradecagon
Regular polygon 14 annotated.svg
A regular tetradecagon
Type Regular polygon
Edges and vertices 14
Schläfli symbol {14}, t{7}
Coxeter–Dynkin diagrams CDel node 1.pngCDel 14.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node 1.png
Symmetry group Dihedral (D14), order 2×14
Internal angle (degrees)154+2/7°
Properties Convex, cyclic, equilateral, isogonal, isotoxal
Dual polygon Self

In geometry, a tetradecagon or tetrakaidecagon or 14-gon is a fourteen-sided polygon.

Contents

Regular tetradecagon

A regular tetradecagon has Schläfli symbol {14} and can be constructed as a quasiregular truncated heptagon, t{7}, which alternates two types of edges.

The area of a regular tetradecagon of side length a is given by

Construction

As 14 = 2 × 7, a regular tetradecagon cannot be constructed using a compass and straightedge. [1] However, it is constructible using neusis with use of the angle trisector, [2] or with a marked ruler, [3] as shown in the following two examples.

Tetradecagon with given circumcircle:
An animation (1 min 47 s) from a neusis construction with radius of circumcircle
O
A
-
=
6
{\displaystyle {\overline {OA}}=6}
,
according to Andrew M. Gleason, based on the angle trisection by means of the tomahawk. 01-Tetradecagon-Tomahawk.gif
Tetradecagon with given circumcircle:
An animation (1 min 47 s) from a neusis construction with radius of circumcircle ,
according to Andrew M. Gleason, based on the angle trisection by means of the tomahawk.
Tetradecagon with given side length:
An animation (1 min 20 s) from a neusis construction with marked ruler, according to David Johnson Leisk (Crockett Johnson). 01-Vierzehneck-nach Johnson.gif
Tetradecagon with given side length:
An animation (1 min 20 s) from a neusis construction with marked ruler, according to David Johnson Leisk (Crockett Johnson).

Symmetry

Symmetries of a regular tetradecagon. Vertices are colored by their symmetry positions. Blue mirrors are drawn through vertices, and purple mirrors are drawn through edge. Gyration orders are given in the center. Symmetries of tetradecagon.png
Symmetries of a regular tetradecagon. Vertices are colored by their symmetry positions. Blue mirrors are drawn through vertices, and purple mirrors are drawn through edge. Gyration orders are given in the center.

The regular tetradecagon has Dih14 symmetry, order 28. There are 3 subgroup dihedral symmetries: Dih7, Dih2, and Dih1, and 4 cyclic group symmetries: Z14, Z7, Z2, and Z1.

These 8 symmetries can be seen in 10 distinct symmetries on the tetradecagon, a larger number because the lines of reflections can either pass through vertices or edges. John Conway labels these by a letter and group order. [4] Full symmetry of the regular form is r28 and no symmetry is labeled a1. The dihedral symmetries are divided depending on whether they pass through vertices (d for diagonal) or edges (p for perpendiculars), and i when reflection lines path through both edges and vertices. Cyclic symmetries in the middle column are labeled as g for their central gyration orders.

Each subgroup symmetry allows one or more degrees of freedom for irregular forms. Only the g14 subgroup has no degrees of freedom but can be seen as directed edges.

The highest symmetry irregular tetradecagons are d14, an isogonal tetradecagon constructed by seven mirrors which can alternate long and short edges, and p14, an isotoxal tetradecagon, constructed with equal edge lengths, but vertices alternating two different internal angles. These two forms are duals of each other and have half the symmetry order of the regular tetradecagon.

Dissection

14-cube t0 A13.svg
14-cube projection
14-gon rhombic dissection-size2.svg
84 rhomb dissection

Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. [5] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular tetradecagon, m=7, and it can be divided into 21: 3 sets of 7 rhombs. This decomposition is based on a Petrie polygon projection of a 7-cube, with 21 of 672 faces. The list OEIS:  A006245 defines the number of solutions as 24698, including up to 14-fold rotations and chiral forms in reflection.

Dissection into 21 rhombs
7-cube graph.svg 14-gon-dissection.svg 14-gon-dissection-star.svg 14-gon rhombic dissection2.svg 14-gon rhombic dissectionx.svg 14-gon-dissection-random.svg

Numismatic use

The regular tetradecagon is used as the shape of some commemorative gold and silver Malaysian coins, the number of sides representing the 14 states of the Malaysian Federation. [6]

The flag of Malaysia, featuring a fourteen-pointed star Flag of Malaysia.svg
The flag of Malaysia, featuring a fourteen-pointed star

A tetradecagram is a 14-sided star polygon, represented by symbol {14/n}. There are two regular star polygons: {14/3} and {14/5}, using the same vertices, but connecting every third or fifth points. There are also three compounds: {14/2} is reduced to 2{7} as two heptagons, while {14/4} and {14/6} are reduced to 2{7/2} and 2{7/3} as two different heptagrams, and finally {14/7} is reduced to seven digons.

A notable application of a fourteen-pointed star is in the flag of Malaysia, which incorporates a yellow {14/6} tetradecagram in the top-right corner, representing the unity of the thirteen states with the federal government.

Compounds and star polygons
n1234567
FormRegularCompoundStar polygonCompoundStar polygonCompound
Image Regular polygon 14.svg
{14/1} = {14}
CDel node 1.pngCDel 14.pngCDel node.png
Regular star figure 2(7,1).svg
{14/2} = 2{7}
CDel node h3.pngCDel 14.pngCDel node.png
Regular star polygon 14-3.svg
{14/3}
CDel node 1.pngCDel 14.pngCDel rat.pngCDel 3x.pngCDel node.png
Regular star figure 2(7,2).svg
{14/4} = 2{7/2}
CDel node h3.pngCDel 14.pngCDel rat.pngCDel 2x.pngCDel node.png
Regular star polygon 14-5.svg
{14/5}
CDel node 1.pngCDel 14.pngCDel rat.pngCDel 5.pngCDel node.png
Regular star figure 2(7,3).svg
{14/6} = 2{7/3}
CDel node h3.pngCDel 14.pngCDel rat.pngCDel 3x.pngCDel node.png
Regular star figure 7(2,1).svg
{14/7} or 7{2}
Internal angle≈154.286°≈128.571°≈102.857°≈77.1429°≈51.4286°≈25.7143°

Deeper truncations of the regular heptagon and heptagrams can produce isogonal (vertex-transitive) intermediate tetradecagram forms with equally spaced vertices and two edge lengths. Other truncations can form double covering polygons 2{p/q}, namely: t{7/6}={14/6}=2{7/3}, t{7/4}={14/4}=2{7/2}, and t{7/2}={14/2}=2{7}. [7]

Isotoxal forms

An isotoxal polygon can be labeled as {pα} with outer most internal angle α, and a star polygon {(p/q)α}, with q is a winding number, and gcd(p,q)=1, q<p. Isotoxal tetradecagons have p=7, and since 7 is prime all solutions, q=1..6, are polygons.

Isotoxal tetradecagon.svg
{7α}
Intersecting isotoxal tetradecagon.svg
{(7/2)α}
Intersecting isotoxal tetradecagon3.svg
{(7/3)α}
Intersecting isotoxal tetradecagon4.svg
{(7/4)α}
Intersecting isotoxal tetradecagon5.svg
{(7/5)α}
Intersecting isotoxal tetradecagon6.svg
{(7/6)α}

Petrie polygons

Regular skew tetradecagons exist as Petrie polygon for many higher-dimensional polytopes, shown in these skew orthogonal projections, including:

Related Research Articles

<span class="mw-page-title-main">Hexagon</span> Shape with six sides

In geometry, a hexagon is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.

<span class="mw-page-title-main">Prism (geometry)</span> Solid with 2 parallel n-gonal bases connected by n parallelograms

In geometry, a prism is a polyhedron comprising an n-sided polygon base, a second base which is a translated copy of the first, and n other faces, necessarily all parallelograms, joining corresponding sides of the two bases. All cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids.

<span class="mw-page-title-main">Star polygon</span> Regular non-convex polygon

In geometry, a star polygon is a type of non-convex polygon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, certain notable ones can arise through truncation operations on regular simple or star polygons.

<span class="mw-page-title-main">Octagon</span> Polygon shape with eight sides

In geometry, an octagon is an eight-sided polygon or 8-gon.

<span class="mw-page-title-main">Decagon</span> Shape with ten sides

In geometry, a decagon is a ten-sided polygon or 10-gon. The total sum of the interior angles of a simple decagon is 1440°.

<span class="mw-page-title-main">Heptagon</span> Shape with seven sides

In geometry, a heptagon or septagon is a seven-sided polygon or 7-gon.

<span class="mw-page-title-main">Icosagon</span> Polygon with 20 edges

In geometry, an icosagon or 20-gon is a twenty-sided polygon. The sum of any icosagon's interior angles is 3240 degrees.

<span class="mw-page-title-main">Dodecagon</span> Polygon with 12 edges

In geometry, a dodecagon, or 12-gon, is any twelve-sided polygon.

<span class="mw-page-title-main">Myriagon</span> Polygon with 10000 edges

In geometry, a myriagon or 10000-gon is a polygon with 10000 sides. Several philosophers have used the regular myriagon to illustrate issues regarding thought.

In geometry, a polytope or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

<span class="mw-page-title-main">Tridecagon</span> Polygon with 13 edges

In geometry, a tridecagon or triskaidecagon or 13-gon is a thirteen-sided polygon.

<span class="mw-page-title-main">Triacontagon</span> Polygon with 30 edges

In geometry, a triacontagon or 30-gon is a thirty-sided polygon. The sum of any triacontagon's interior angles is 5040 degrees.

<span class="mw-page-title-main">Equiangular polygon</span> Polygon with equally angled vertices

In Euclidean geometry, an equiangular polygon is a polygon whose vertex angles are equal. If the lengths of the sides are also equal then it is a regular polygon. Isogonal polygons are equiangular polygons which alternate two edge lengths.

In geometry, a polytope or a tiling is isotoxal or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation, and/or reflection that will move one edge to the other while leaving the region occupied by the object unchanged.

<span class="mw-page-title-main">Hexadecagon</span> Polygon with 16 edges

In mathematics, a hexadecagon is a sixteen-sided polygon.

<span class="mw-page-title-main">Octadecagon</span> Polygon with 18 edges

In geometry, an octadecagon or 18-gon is an eighteen-sided polygon.

In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

<span class="mw-page-title-main">Megagon</span> Polygon with 1 million edges

A megagon or 1,000,000-gon (million-gon) is a polygon with one million sides.

<span class="mw-page-title-main">Icositetragon</span> Polygon with 24 edges

In geometry, an icositetragon or 24-gon is a twenty-four-sided polygon. The sum of any icositetragon's interior angles is 3960 degrees.

In geometry, an infinite skew polygon or skew apeirogon is an infinite 2-polytope with vertices that are not all colinear. Infinite zig-zag skew polygons are 2-dimensional infinite skew polygons with vertices alternating between two parallel lines. Infinite helical polygons are 3-dimensional infinite skew polygons with vertices on the surface of a cylinder.

References

  1. Wantzel, Pierre (1837). "Recherches sur les moyens de Reconnaître si un Problème de géométrie peau se résoudre avec la règle et le compas" (PDF). Journal de Mathématiques: 366–372.
  2. 1 2 Gleason, Andrew Mattei (March 1988). "Angle trisection, the heptagon, p. 186 (Fig.1) –187" (PDF). The American Mathematical Monthly. 95 (3): 185–194. doi:10.2307/2323624. Archived from the original (PDF) on 2016-02-02.
  3. 1 2 Weisstein, Eric W. "Heptagon." From MathWorld, A Wolfram Web Resource.
  4. John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN   978-1-56881-220-5 (Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon pp. 275-278)
  5. Coxeter, Mathematical recreations and Essays, Thirteenth edition, p.141
  6. The Numismatist, Volume 96, Issues 7-12, Page 1409, American Numismatic Association, 1983.
  7. The Lighter Side of Mathematics: Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History, (1994), Metamorphoses of polygons, Branko Grünbaum