List of planar symmetry groups

Last updated

This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane:

Contents

Rosette groups

There are two families of discrete two-dimensional point groups, and they are specified with parameter n, which is the order of the group of the rotations in the group.

Family Intl
(orbifold)
Schön. Geo [1]
Coxeter
OrderExamples
Cyclic symmetry n
(n•)
Cnn
[n]+
CDel node h2.pngCDel n.pngCDel node h2.png
n Cyclic symmetry 1.svg
C1, [ ]+ (•)
Cyclic symmetry 2.svg
C2, [2]+ (2•)
Cyclic symmetry 3.png
C3, [3]+ (3•)
Cyclic symmetry 4.png
C4, [4]+ (4•)
Cyclic symmetry 5.png
C5, [5]+ (5•)
Cyclic symmetry 6.png
C6, [6]+ (6•)
Dihedral symmetry nm
(*n•)
Dnn
[n]
CDel node.pngCDel n.pngCDel node.png
2n Dihedral symmetry domains 1.png
D1, [ ] (*•)
Dihedral symmetry domains 2.png
D2, [2] (*2•)
Dihedral symmetry domains 3.png
D3, [3] (*3•)
Dihedral symmetry domains 4.png
D4, [4] (*4•)
Dihedral symmetry domains 5.png
D5, [5] (*5•)
Dihedral symmetry domains 6.png
D6, [6] (*6•)

Frieze groups

The 7 frieze groups, the two-dimensional line groups, with a direction of periodicity are given with five notational names. The Schönflies notation is given as infinite limits of 7 dihedral groups. The yellow regions represent the infinite fundamental domain in each.

[1,∞], CDel node h2.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
IUC
(orbifold)
Geo Schönflies Coxeter Fundamental
domain
Example
p1m1
(*∞•)
p1C∞v[1,∞]
CDel node h2.pngCDel 2.pngCDel node c2.pngCDel infin.pngCDel node c6.png
Frieze group m1.png Frieze example p1m1.png
Frieze sidle.png sidle
p1
(∞•)
p1C[1,∞]+
CDel node h2.pngCDel 2.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Frieze group 11.png Frieze example p1.png
Frieze hop.png hop
[2,∞+], CDel node.pngCDel 2.pngCDel node h2.pngCDel infin.pngCDel node h2.png
IUC
(orbifold)
GeoSchönfliesCoxeterFundamental
domain
Example
p11m
(∞*)
p. 1C∞h[2,∞+]
CDel node c2.pngCDel 2.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Frieze group 1m.png Frieze example p11m.png
Frieze jump.png jump
p11g
(∞×)
p.g1S2∞[2+,∞+]
CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel infin.pngCDel node h2.png
Frieze group 1g.png Frieze example p11g.png
Frieze step.png step
[2,∞], CDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
IUC
(orbifold)
GeoSchönfliesCoxeterFundamental
domain
Example
p2mm
(*22∞)
p2D∞h[2,∞]
CDel node c5.pngCDel 2.pngCDel node c2.pngCDel infin.pngCDel node c6.png
Frieze group mm.png Frieze example p2mm.png
Frieze spinning jump.png spinning jump
p2mg
(2*∞)
p2gD∞d[2+,∞]
CDel node h2.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node c2.png
Frieze group mg.png Frieze example p2mg.png
Frieze spinning sidle.png spinning sidle
p2
(22∞)
p2D[2,∞]+
CDel node h2.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Frieze group 12.png Frieze example p2.png
Frieze spinning hop.png spinning hop

Wallpaper groups

The 17 wallpaper groups, with finite fundamental domains, are given by International notation, orbifold notation, and Coxeter notation, classified by the 5 Bravais lattices in the plane: square, oblique (parallelogrammatic), hexagonal (equilateral triangular), rectangular (centered rhombic), and rhombic (centered rectangular).

The p1 and p2 groups, with no reflectional symmetry, are repeated in all classes. The related pure reflectional Coxeter group are given with all classes except oblique.

Square
[4,4], CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
IUC
(Orb.)
Geo
Coxeter Domain
Conway name
p1
(°)
p1
Wallpaper group diagram p1 square.svg
Monotropic
p2
(2222)
p2
[4,1+,4]+
CDel labelh.pngCDel node.pngCDel split1-44.pngCDel branch h2h2.pngCDel label2.png
[1+,4,4,1+]+
CDel node h0.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node h0.png
Wallpaper group diagram p2 square.svg
Ditropic
pgg
(22×)
pg2g
[4+,4+]
CDel node h2.pngCDel 4.pngCDel node h4.pngCDel 4.pngCDel node h2.png
Wallpaper group diagram pgg square.svg
Diglide
pmm
(*2222)
p2
[4,1+,4]
CDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.png
[1+,4,4,1+]
CDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
Wallpaper group diagram pmm square.svg
Discopic
cmm
(2*22)
c2
[(4,4,2+)]
CDel node.pngCDel split1-44.pngCDel branch h2h2.pngCDel label2.png
Wallpaper group diagram cmm square.svg
Dirhombic
p4
(442)
p4
[4,4]+
CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 4.pngCDel node h2.png
Wallpaper group diagram p4 square.svg
Tetratropic
p4g
(4*2)
pg4
[4+,4]
CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 4.pngCDel node.png
Wallpaper group diagram p4g square.svg
Tetragyro
p4m
(*442)
p4
[4,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Wallpaper group diagram p4m square.svg
Tetrascopic
Rectangular
[∞h,2,∞v], CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
IUC
(Orb.)
Geo
CoxeterDomain
Conway name
p1
(°)
p1
[∞+,2,∞+]
CDel labelinfin.pngCDel branch h2h2.pngCDel 2.pngCDel branch h2h2.pngCDel labelinfin.png
Wallpaper group diagram p1 rect.svg
Monotropic
p2
(2222)
p2
[∞,2,∞]+
CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Wallpaper group diagram p2 rect.svg
Ditropic
pg(h)
(××)
pg1
h: [∞+,(2,∞)+]
CDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Wallpaper group diagram pg.svg
Monoglide
pg(v)
(××)
pg1
v: [(∞,2)+,∞+]
CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h4.pngCDel infin.pngCDel node h2.png
Wallpaper group diagram pg rotated.svg
Monoglide
pgm
(22*)
pg2
h: [(∞,2)+,∞]
CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node.png
Wallpaper group diagram pmg.svg
Digyro
pmg
(22*)
pg2
v: [∞,(2,∞)+]
CDel node.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Wallpaper group diagram pmg rotated.svg
Digyro
pm(h)
(**)
p1
h: [∞+,2,∞]
CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
Wallpaper group diagram pm.svg
Monoscopic
pm(v)
(**)
p1
v: [∞,2,∞+]
CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Wallpaper group diagram pm rotated.svg
Monoscopic
pmm
(*2222)
p2
[∞,2,∞]
CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
Wallpaper group diagram pmm.svg
Discopic
Rhombic
[∞h,2+,∞v], CDel node.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node.png
IUC
(Orb.)
Geo
CoxeterDomain
Conway name
p1
(°)
p1
[∞+,2+,∞+]
CDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel infin.pngCDel node h2.png
Wallpaper group diagram p1 rhombic.svg
Monotropic
p2
(2222)
p2
[∞,2+,∞]+
CDel label2.pngCDel branch h2h2.pngCDel 2.pngCDel iaib.pngCDel 2.pngCDel branch h2h2.pngCDel label2.png
Wallpaper group diagram p2 rhombic.svg
Ditropic
cm(h)
(*×)
c1
h: [∞+,2+,∞]
CDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node.png
Wallpaper group diagram cm.svg
Monorhombic
cm(v)
(*×)
c1
v: [∞,2+,∞+]
CDel node.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h4.pngCDel infin.pngCDel node h2.png
Wallpaper group diagram cm rotated.svg
Monorhombic
pgg
(22×)
pg2g
[((∞,2)+)[2]]
CDel node h2.pngCDel split1-2i.pngCDel nodes h4h4.pngCDel split2-i2.pngCDel node h2.png
Wallpaper group diagram pgg.svg
Diglide
cmm
(2*22)
c2
[∞,2+,∞]
CDel node.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node.png
Wallpaper group diagram cmm.svg
Dirhombic
Parallelogrammatic (oblique)
p1
(°)
p1
Wallpaper group diagram p1.svg
Monotropic
p2
(2222)
p2
Wallpaper group diagram p2.svg
Ditropic
Hexagonal/Triangular
[6,3], CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png / [3[3]], CDel node.pngCDel split1.pngCDel branch.png
IUC
(Orb.)
Geo
CoxeterDomain
Conway name
p1
(°)
p1
Wallpaper group diagram p1 half.svg
Monotropic
p2
(2222)
p2
[6,3]Δ Wallpaper group diagram p2 half.svg
Ditropic
cmm
(2*22)
c2
[6,3] Wallpaper group diagram cmm half.svg
Dirhombic
p3
(333)
p3
[1+,6,3+]
CDel node h0.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png
[3[3]]+
CDel branch h2h2.pngCDel split2.pngCDel node h2.png
Wallpaper group diagram p3.svg
Tritropic
p3m1
(*333)
p3
[1+,6,3]
CDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
[3[3]]
CDel branch.pngCDel split2.pngCDel node.png
Wallpaper group diagram p3m1.svg
Triscopic
p31m
(3*3)
h3
[6,3+]
CDel node.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png
Wallpaper group diagram p31m.svg
Trigyro
p6
(632)
p6
[6,3]+
CDel node h2.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png
Wallpaper group diagram p6.svg
Hexatropic
p6m
(*632)
p6
[6,3]
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Wallpaper group diagram p6m.svg
Hexascopic

Wallpaper subgroup relationships

Subgroup relationships among the 17 wallpaper group [2]
o2222××**22×22**22222*224424*2*442333*3333*3632*632
p1p2pgpmcmpggpmgpmmcmmp4p4gp4mp3p3m1p31mp6p6m
op12
2222p2222
××pg22
**pm2222
cm2223
22×pgg4223
22*pmg4222423
*2222pmm424244222
2*22cmm424422224
442p4422
4*2p4g84484244229
*442p4m848444422222
333p333
*333p3m16663243
3*3p31m6663234
632p66324
*632p6m12612126666342223

See also

Notes

  1. The Crystallographic Space groups in Geometric algebra, D. Hestenes and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) PDF
  2. Coxeter, (1980), The 17 plane groups, Table 4

Related Research Articles

<span class="mw-page-title-main">4-polytope</span> Four-dimensional geometric object with flat sides

In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.

<span class="mw-page-title-main">Wallpaper group</span> Classification of a two-dimensional repetitive pattern

A wallpaper group is a mathematical classification of a two-dimensional repetitive pattern, based on the symmetries in the pattern. Such patterns occur frequently in architecture and decorative art, especially in textiles, tiles, and wallpaper.

<span class="mw-page-title-main">Schläfli symbol</span> Notation that defines regular polytopes and tessellations

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

In geometry, orbifold notation is a system, invented by the mathematician William Thurston and promoted by John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advantage of the notation is that it describes these groups in a way which indicates many of the groups' properties: in particular, it follows William Thurston in describing the orbifold obtained by taking the quotient of Euclidean space by the group under consideration.

<span class="mw-page-title-main">Tetrahedral-octahedral honeycomb</span> Quasiregular space-filling tesselation

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

<span class="mw-page-title-main">Uniform 6-polytope</span> Uniform 6-dimensional polytope

In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes.

In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces.

<span class="mw-page-title-main">5-demicube</span> Regular 5-polytope

In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a 5-hypercube (penteract) with alternated vertices removed.

<span class="mw-page-title-main">Snub (geometry)</span> Geometric operation applied to a polyhedron

In geometry, a snub is an operation applied to a polyhedron. The term originates from Kepler's names of two Archimedean solids, for the snub cube and snub dodecahedron.

<span class="mw-page-title-main">6-demicube</span> Uniform 6-polytope

In geometry, a 6-demicube or demihexeract is a uniform 6-polytope, constructed from a 6-cube (hexeract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

<span class="mw-page-title-main">7-demicube</span> Uniform 7-polytope

In geometry, a demihepteract or 7-demicube is a uniform 7-polytope, constructed from the 7-hypercube (hepteract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

<span class="mw-page-title-main">Uniform 5-polytope</span> Five-dimensional geometric shape

In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.

<span class="mw-page-title-main">Rhombitriapeirogonal tiling</span>

In geometry, the rhombtriapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of rr{∞,3}.

<span class="mw-page-title-main">Order-4 apeirogonal tiling</span> Regular tiling in geometry

In geometry, the order-4 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,4}.

A<sub>4</sub> polytope

In 4-dimensional geometry, there are 9 uniform polytopes with A4 symmetry. There is one self-dual regular form, the 5-cell with 5 vertices.

B<sub>4</sub> polytope

In 4-dimensional geometry, there are 15 uniform 4-polytopes with B4 symmetry. There are two regular forms, the tesseract and 16-cell, with 16 and 8 vertices respectively.

In 4-dimensional geometry, there are 7 uniform 4-polytopes with reflections of D4 symmetry, all are shared with higher symmetry constructions in the B4 or F4 symmetry families. there is also one half symmetry alternation, the snub 24-cell.

<span class="mw-page-title-main">Regular skew apeirohedron</span> Infinite regular skew polyhedron

In geometry, a regular skew apeirohedron is an infinite regular skew polyhedron. They have either skew regular faces or skew regular vertex figures.

References