Orbifold notation

Last updated

In geometry, orbifold notation (or orbifold signature) is a system, invented by the mathematician William Thurston and promoted by John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advantage of the notation is that it describes these groups in a way which indicates many of the groups' properties: in particular, it follows William Thurston in describing the orbifold obtained by taking the quotient of Euclidean space by the group under consideration.

Contents

Groups representable in this notation include the point groups on the sphere (), the frieze groups and wallpaper groups of the Euclidean plane (), and their analogues on the hyperbolic plane ().

Definition of the notation

The following types of Euclidean transformation can occur in a group described by orbifold notation:

All translations which occur are assumed to form a discrete subgroup of the group symmetries being described.

Each group is denoted in orbifold notation by a finite string made up from the following symbols:

A string written in boldface represents a group of symmetries of Euclidean 3-space. A string not written in boldface represents a group of symmetries of the Euclidean plane, which is assumed to contain two independent translations.

Each symbol corresponds to a distinct transformation:

Good orbifolds

An orbifold symbol is called good if it is not one of the following: p, pq, *p, *pq, for p, q ≥ 2, and pq.

Chirality and achirality

An object is chiral if its symmetry group contains no reflections; otherwise it is called achiral. The corresponding orbifold is orientable in the chiral case and non-orientable otherwise.

The Euler characteristic and the order

The Euler characteristic of an orbifold can be read from its Conway symbol, as follows. Each feature has a value:

Subtracting the sum of these values from 2 gives the Euler characteristic.

If the sum of the feature values is 2, the order is infinite, i.e., the notation represents a wallpaper group or a frieze group. Indeed, Conway's "Magic Theorem" indicates that the 17 wallpaper groups are exactly those with the sum of the feature values equal to 2. Otherwise, the order is 2 divided by the Euler characteristic.

Equal groups

The following groups are isomorphic:

This is because 1-fold rotation is the "empty" rotation.

Two-dimensional groups

Bentley Snowflake13.jpg
A perfect snowflake would have *6• symmetry,
Pentagon symmetry as mirrors 2005-07-08.png
The pentagon has symmetry *5•, the whole image with arrows 5•.
Flag of Hong Kong.svg
The Flag of Hong Kong has 5 fold rotation symmetry, 5•.

The symmetry of a 2D object without translational symmetry can be described by the 3D symmetry type by adding a third dimension to the object which does not add or spoil symmetry. For example, for a 2D image we can consider a piece of carton with that image displayed on one side; the shape of the carton should be such that it does not spoil the symmetry, or it can be imagined to be infinite. Thus we have n• and *n•. The bullet (•) is added on one- and two-dimensional groups to imply the existence of a fixed point. (In three dimensions these groups exist in an n-fold digonal orbifold and are represented as nn and *nn.)

Similarly, a 1D image can be drawn horizontally on a piece of carton, with a provision to avoid additional symmetry with respect to the line of the image, e.g. by drawing a horizontal bar under the image. Thus the discrete symmetry groups in one dimension are *•, *1•, • and *•.

Another way of constructing a 3D object from a 1D or 2D object for describing the symmetry is taking the Cartesian product of the object and an asymmetric 2D or 1D object, respectively.

Correspondence tables

Spherical

Fundamental domains of reflective 3D point groups
(*11), C1v = Cs(*22), C2v(*33), C3v(*44), C4v(*55), C5v(*66), C6v
Spherical digonal hosohedron2.png
Order 2
Spherical square hosohedron2.png
Order 4
Spherical hexagonal hosohedron2.png
Order 6
Spherical octagonal hosohedron2.png
Order 8
Spherical decagonal hosohedron2.png
Order 10
Spherical dodecagonal hosohedron2.png
Order 12
(*221), D1h = C2v(*222), D2h(*223), D3h(*224), D4h(*225), D5h(*226), D6h
Spherical digonal bipyramid2.svg
Order 4
Spherical square bipyramid2.svg
Order 8
Spherical hexagonal bipyramid2.png
Order 12
Spherical octagonal bipyramid2.png
Order 16
Spherical decagonal bipyramid2.png
Order 20
Spherical dodecagonal bipyramid2.png
Order 24
(*332), Td(*432), Oh(*532), Ih
Tetrahedral reflection domains.png
Order 24
Octahedral reflection domains.png
Order 48
Icosahedral reflection domains.png
Order 120
Spherical symmetry groups [1]
Orbifold
signature
Coxeter Schönflies Hermann–Mauguin Order
Polyhedral groups
*532[3,5]Ih53m120
532[3,5]+I53260
*432[3,4]Ohm3m48
432[3,4]+O43224
*332[3,3]Td43m24
3*2[3+,4]Thm324
332[3,3]+T2312
Dihedral and cyclic groups: n = 3, 4, 5 ...
*22n[2,n]Dnhn/mmm or 2nm24n
2*n[2+,2n]Dnd2n2m or nm4n
22n[2,n]+Dnn22n
*nn[n]Cnvnm2n
n*[n+,2]Cnhn/m or 2n2n
[2+,2n+]S2n2n or n2n
nn[n]+Cnnn
Special cases
*222[2,2]D2h2/mmm or 22m28
2*2[2+,4]D2d222m or 2m8
222[2,2]+D2224
*22[2]C2v2m4
2*[2+,2]C2h2/m or 224
[2+,4+]S422 or 24
22[2]+C222
*22[1,2]D1h = C2v1/mmm or 21m24
2*[2+,2]D1d = C2h212m or 1m4
22[1,2]+D1 = C2122
*1[ ]C1v = Cs1m2
1*[2,1+]C1h = Cs1/m or 212
[2+,2+]S2 = Ci21 or 12
1[ ]+C111

Euclidean plane

Frieze groups

Frieze groups
IUC Cox. Schön. * Orbifold Diagram§Examples and
Conway nickname [2]
Description
p1[∞]+
CDel node h2.pngCDel infin.pngCDel node h2.png
C
Z
∞∞ Frieze group 11.png Frieze example p1.png Frieze hop.png
hop
(T) Translations only:
This group is singly generated, by a translation by the smallest distance over which the pattern is periodic.
p11g[∞+,2+]
CDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h2.png
S
Z
∞× Frieze group 1g.png Frieze example p11g.png Frieze step.png
step
(TG) Glide-reflections and Translations:
This group is singly generated, by a glide reflection, with translations being obtained by combining two glide reflections.
p1m1[∞]
CDel node.pngCDel infin.pngCDel node.png
C∞v
Dih
*∞∞ Frieze group m1.png Frieze example p1m1.png Frieze sidle.png
sidle
(TV) Vertical reflection lines and Translations:
The group is the same as the non-trivial group in the one-dimensional case; it is generated by a translation and a reflection in the vertical axis.
p2[∞,2]+
CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.png
D
Dih
22∞ Frieze group 12.png Frieze example p2.png Frieze spinning hop.png
spinning hop
(TR) Translations and 180° Rotations:
The group is generated by a translation and a 180° rotation.
p2mg[∞,2+]
CDel node.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.png
D∞d
Dih
2*∞ Frieze group mg.png Frieze example p2mg.png Frieze spinning sidle.png
spinning sidle
(TRVG) Vertical reflection lines, Glide reflections, Translations and 180° Rotations:
The translations here arise from the glide reflections, so this group is generated by a glide reflection and either a rotation or a vertical reflection.
p11m[∞+,2]
CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2.pngCDel node.png
C∞h
Z×Dih1
∞* Frieze group 1m.png Frieze example p11m.png Frieze jump.png
jump
(THG) Translations, Horizontal reflections, Glide reflections:
This group is generated by a translation and the reflection in the horizontal axis. The glide reflection here arises as the composition of translation and horizontal reflection
p2mm[∞,2]
CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.png
D∞h
Dih×Dih1
*22∞ Frieze group mm.png Frieze example p2mm.png Frieze spinning jump.png
spinning jump
(TRHVG) Horizontal and Vertical reflection lines, Translations and 180° Rotations:
This group requires three generators, with one generating set consisting of a translation, the reflection in the horizontal axis and a reflection across a vertical axis.
*Schönflies's point group notation is extended here as infinite cases of the equivalent dihedral points symmetries
§The diagram shows one fundamental domain in yellow, with reflection lines in blue, glide reflection lines in dashed green, translation normals in red, and 2-fold gyration points as small green squares.

Wallpaper groups

Fundamental domains of Euclidean reflective groups
(*442), p4m(4*2), p4g
Uniform tiling 44-t1.png Tile V488 bicolor.svg
(*333), p3m(632), p6
Tile 3,6.svg Tile V46b.svg
17 wallpaper groups [3]
Orbifold
signature
Coxeter Hermann–
Mauguin
Speiser
Niggli
Polya
Guggenhein
Fejes Toth
Cadwell
*632[6,3]p6mC(I)6vD6W16
632[6,3]+p6C(I)6C6W6
*442[4,4]p4mC(I)4D*4W14
4*2[4+,4]p4gCII4vDo4W24
442[4,4]+p4C(I)4C4W4
*333[3[3]]p3m1CII3vD*3W13
3*3[3+,6]p31mCI3vDo3W23
333[3[3]]+p3CI3C3W3
*2222[∞,2,∞]pmmCI2vD2kkkkW22
2*22[∞,2+,∞]cmmCIV2vD2kgkgW12
22*[(∞,2)+,∞]pmgCIII2vD2kkggW32
22×[∞+,2+,∞+]pggCII2vD2ggggW42
2222[∞,2,∞]+p2C(I)2C2W2
**[∞+,2,∞]pmCIsD1kkW21
[∞+,2+,∞]cmCIIIsD1kgW11
××[∞+,(2,∞)+]pgCII2D1ggW31
o[∞+,2,∞+]p1C(I)1C1W1

Hyperbolic plane

Poincaré disk model of fundamental domain triangles
Example right triangles (*2pq)
H2checkers 237.png
*237
H2checkers 238.png
*238
Hyperbolic domains 932 black.png
*239
H2checkers 23i.png
*23
H2checkers 245.png
*245
H2checkers 246.png
*246
H2checkers 247.png
*247
H2checkers 248.png
*248
H2checkers 24i.png
*42
H2checkers 255.png
*255
H2checkers 256.png
*256
H2checkers 257.png
*257
H2checkers 266.png
*266
H2checkers 2ii.png
*2
Example general triangles (*pqr)
H2checkers 334.png
*334
H2checkers 335.png
*335
H2checkers 336.png
*336
H2checkers 337.png
*337
H2checkers 33i.png
*33
H2checkers 344.png
*344
H2checkers 366.png
*366
H2checkers 3ii.png
*3
H2checkers 666.png
*63
Infinite-order triangular tiling.svg
*3
Example higher polygons (*pqrs...)
Hyperbolic domains 3222.png
*2223
H2chess 246a.png
*(23)2
H2chess 248a.png
*(24)2
H2chess 246b.png
*34
H2chess 248b.png
*44
Uniform tiling 552-t1.png
*25
Uniform tiling 66-t1.png
*26
Uniform tiling 77-t1.png
*27
Uniform tiling 88-t1.png
*28
Hyperbolic domains i222.png
*222
H2chess 24ia.png
*(2)2
H2chess 24ib.png
*4
H2chess 24ic.png
*2
H2chess iiic.png
*

A first few hyperbolic groups, ordered by their Euler characteristic are:

Hyperbolic symmetry groups [4]
−1/χOrbifolds Coxeter
84*237[7,3]
48*238[8,3]
42237[7,3]+
40*245[5,4]
36–26.4*239, *2 3 10[9,3], [10,3]
26.4*2 3 11[11,3]
24*2 3 12, *246, *334, 3*4, 238[12,3], [6,4], [(4,3,3)], [3+,8], [8,3]+
22.3–21*2 3 13, *2 3 14[13,3], [14,3]
20*2 3 15, *255, 5*2, 245[15,3], [5,5], [5+,4], [5,4]+
19.2*2 3 16[16,3]
18+23*247[7,4]
18*2 3 18, 239[18,3], [9,3]+
17.5–16.2*2 3 19, *2 3 20, *2 3 21, *2 3 22, *2 3 23[19,3], [20,3], [20,3], [21,3], [22,3], [23,3]
16*2 3 24, *248[24,3], [8,4]
15*2 3 30, *256, *335, 3*5, 2 3 10[30,3], [6,5], [(5,3,3)], [3+,10], [10,3]+
14+2513+13*2 3 36 ... *2 3 70, *249, *2 4 10[36,3] ... [60,3], [9,4], [10,4]
13+15*2 3 66, 2 3 11[66,3], [11,3]+
12+811*2 3 105, *257[105,3], [7,5]
12+47*2 3 132, *2 4 11 ...[132,3], [11,4], ...
12*23, *2 4 12, *266, 6*2, *336, 3*6, *344, 4*3, *2223, 2*23, 2 3 12, 246, 334[,3] [12,4], [6,6], [6+,4], [(6,3,3)], [3+,12], [(4,4,3)], [4+,6], [,3,], [12,3]+, [6,4]+ [(4,3,3)]+
...

See also

Related Research Articles

<span class="mw-page-title-main">Symmetry group</span> Group of transformations under which the object is invariant

In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym(X).

<span class="mw-page-title-main">Orbifold</span> Generalized manifold

In the mathematical disciplines of topology and geometry, an orbifold is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space.

<span class="mw-page-title-main">Frieze group</span> Type of symmetry group

In mathematics, a frieze or frieze pattern is a two-dimensional design that repeats in one direction. The term is derived from architecture and decorative arts, where such repeating patterns are often used. Frieze patterns can be classified into seven types according to their symmetries. The set of symmetries of a frieze pattern is called a frieze group.

<span class="mw-page-title-main">Wallpaper group</span> Classification of a two-dimensional repetitive pattern

A wallpaper group is a mathematical classification of a two-dimensional repetitive pattern, based on the symmetries in the pattern. Such patterns occur frequently in architecture and decorative art, especially in textiles, tiles, and wallpaper.

<span class="mw-page-title-main">Rotation (mathematics)</span> Motion of a certain space that preserves at least one point

Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space.

<span class="mw-page-title-main">Glide reflection</span> Geometric transformation combining reflection and translation

In geometry, a glide reflection or transflection is a geometric transformation that consists of a reflection across a hyperplane and a translation ("glide") in a direction parallel to that hyperplane, combined into a single transformation. Because the distances between points are not changed under glide reflection, it is a motion or isometry. When the context is the two-dimensional Euclidean plane, the hyperplane of reflection is a straight line called the glide line or glide axis. When the context is three-dimensional space, the hyperplane of reflection is a plane called the glide plane. The displacement vector of the translation is called the glide vector.

<span class="mw-page-title-main">Space group</span> Symmetry group of a configuration in space

In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group are the rigid transformations of the pattern that leave it unchanged. In three dimensions, space groups are classified into 219 distinct types, or 230 types if chiral copies are considered distinct. Space groups are discrete cocompact groups of isometries of an oriented Euclidean space in any number of dimensions. In dimensions other than 3, they are sometimes called Bieberbach groups.

<span class="mw-page-title-main">Euclidean group</span> Isometry group of Euclidean space

In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space ; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations). The group depends only on the dimension n of the space, and is commonly denoted E(n) or ISO(n), for inhomogeneous special orthogonal group.

<span class="mw-page-title-main">Point group</span> Group of geometric symmetries with at least one fixed point

In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d). Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules.

A Seifert fiber space is a 3-manifold together with a decomposition as a disjoint union of circles. In other words, it is a -bundle over a 2-dimensional orbifold. Many 3-manifolds are Seifert fiber spaces, and they account for all compact oriented manifolds in 6 of the 8 Thurston geometries of the geometrization conjecture.

In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.

In geometry, dihedral symmetry in three dimensions is one of three infinite sequences of point groups in three dimensions which have a symmetry group that as an abstract group is a dihedral group Dihn.

<span class="mw-page-title-main">Cyclic symmetry in three dimensions</span>

In three dimensional geometry, there are four infinite series of point groups in three dimensions (n≥1) with n-fold rotational or reflectional symmetry about one axis (by an angle of 360°/n) that does not change the object.

In hyperbolic geometry, a uniform hyperbolic tiling is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent, and the tiling has a high degree of rotational and translational symmetry.

<span class="mw-page-title-main">Coxeter notation</span> Classification system for symmetry groups in geometry

In geometry, Coxeter notation is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson.

<span class="mw-page-title-main">Rhombitriapeirogonal tiling</span>

In geometry, the rhombtriapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of rr{∞,3}.

<i>Circle Limit III</i> 1959 woodcut by M. C. Escher

Circle Limit III is a woodcut made in 1959 by Dutch artist M. C. Escher, in which "strings of fish shoot up like rockets from infinitely far away" and then "fall back again whence they came".

<span class="mw-page-title-main">Symmetry (geometry)</span> Geometrical property

In geometry, an object has symmetry if there is an operation or transformation that maps the figure/object onto itself. Thus, a symmetry can be thought of as an immunity to change. For instance, a circle rotated about its center will have the same shape and size as the original circle, as all points before and after the transform would be indistinguishable. A circle is thus said to be symmetric under rotation or to have rotational symmetry. If the isometry is the reflection of a plane figure about a line, then the figure is said to have reflectional symmetry or line symmetry; it is also possible for a figure/object to have more than one line of symmetry.

The Symmetries of Things is a book on mathematical symmetry and the symmetries of geometric objects, aimed at audiences of multiple levels. It was written over the course of many years by John Horton Conway, Heidi Burgiel, and Chaim Goodman-Strauss, and published in 2008 by A K Peters. Its critical reception was mixed, with some reviewers praising it for its accessible and thorough approach to its material and for its many inspiring illustrations, and others complaining about its inconsistent level of difficulty, overuse of neologisms, failure to adequately cite prior work, and technical errors.

References

  1. Symmetries of Things, Appendix A, page 416
  2. Frieze Patterns Mathematician John Conway created names that relate to footsteps for each of the frieze groups.
  3. Symmetries of Things, Appendix A, page 416
  4. Symmetries of Things, Chapter 18, More on Hyperbolic groups, Enumerating hyperbolic groups, p239