8-orthoplex

Last updated
8-orthoplex
Octacross
8-orthoplex.svg
Orthogonal projection
inside Petrie polygon
TypeRegular 8-polytope
Family orthoplex
Schläfli symbol {36,4}
{3,3,3,3,3,31,1}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
7-faces256 {36} 7-simplex t0.svg
6-faces1024 {35} 6-simplex t0.svg
5-faces1792 {34} 5-simplex t0.svg
4-faces1792 {33} 4-simplex t0.svg
Cells1120 {3,3} 3-simplex t0.svg
Faces448 {3} 2-simplex t0.svg
Edges112
Vertices16
Vertex figure 7-orthoplex
Petrie polygon hexadecagon
Coxeter groups C8, [36,4]
D8, [35,1,1]
Dual 8-cube
Properties convex, Hanner polytope

In geometry, an 8-orthoplex or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cell 4-faces, 1792 5-faces, 1024 6-faces, and 256 7-faces.

Contents

It has two constructive forms, the first being regular with Schläfli symbol {36,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,3,3,3,31,1} or Coxeter symbol 511.

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is an 8-hypercube, or octeract.

Alternate names

As a configuration

This configuration matrix represents the 8-orthoplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces, 6-faces and 7-faces. The diagonal numbers say how many of each element occur in the whole 8-orthoplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. [2] [3]

The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing individual mirrors. [1]

B8CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngk-facefkf0f1f2f3f4f5f6f7 k-figure notes
B7CDel node x.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png( )f0161484280560672448128 {3,3,3,3,3,4} B8/B7 = 2^8*8!/2^7/7! = 16
A1B6CDel node 1.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png{ }f12112126016024019264 {3,3,3,3,4} B8/A1B6 = 2^8*8!/2/2^6/6! = 112
A2B5CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png {3} f2334481040808032 {3,3,3,4} B8/A2B5 = 2^8*8!/3!/2^5/5! = 448
A3B4CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png {3,3} f346411208243216 {3,3,4} B8/A3B4 = 2^8*8!/4!/2^4/4! = 1120
A4B3CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png {3,3,3} f451010517926128 {3,4} B8/A4B3 = 2^8*8!/5!/8/3! = 1792
A5B2CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.png {3,3,3,3} f561520156179244 {4} B8/A5B2 = 2^8*8!/6!/4/2 = 1792
A6A1CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node.png {3,3,3,3,3} f6721353521710242{ }B8/A6A1 = 2^8*8!/7!/2 = 1024
A7CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node x.png {3,3,3,3,3,3} f7828567056288256( )B8/A7 = 2^8*8!/8! = 256

Construction

There are two Coxeter groups associated with the 8-cube, one regular, dual of the octeract with the C8 or [4,3,3,3,3,3,3] symmetry group, and a half symmetry with two copies of 7-simplex facets, alternating, with the D8 or [35,1,1] symmetry group. A lowest symmetry construction is based on a dual of an 8-orthotope, called an 8-fusil.

Name Coxeter diagram Schläfli symbol Symmetry Order Vertex figure
regular 8-orthoplexCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png{3,3,3,3,3,3,4}[3,3,3,3,3,3,4]10321920CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Quasiregular 8-orthoplexCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png{3,3,3,3,3,31,1}[3,3,3,3,3,31,1]5160960CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
8-fusil CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png8{}[27]256CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png

Cartesian coordinates

Cartesian coordinates for the vertices of an 8-cube, centered at the origin are

(±1,0,0,0,0,0,0,0), (0,±1,0,0,0,0,0,0), (0,0,±1,0,0,0,0,0), (0,0,0,±1,0,0,0,0),
(0,0,0,0,±1,0,0,0), (0,0,0,0,0,±1,0,0), (0,0,0,0,0,0,0,±1), (0,0,0,0,0,0,0,±1)

Every vertex pair is connected by an edge, except opposites.

Images

orthographic projections
B8B7
8-cube t7.svg 8-cube t7 B7.svg
[16][14]
B6B5
8-cube t7 B6.svg 8-cube t7 B5.svg
[12][10]
B4B3B2
8-cube t7 B4.svg 8-cube t7 B3.svg 8-cube t7 B2.svg
[8][6][4]
A7A5A3
8-cube t7 A7.svg 8-cube t7 A5.svg 8-cube t7 A3.svg
[8][6][4]

It is used in its alternated form 511 with the 8-simplex to form the 521 honeycomb.

References

  1. 1 2 Klitzing, Richard. "x3o3o3o3o3o3o4o - ek".
  2. Coxeter, Regular Polytopes, sec 1.8 Configurations
  3. Coxeter, Complex Regular Polytopes, p.117
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compoundsPolytope operations