9-orthoplex

Last updated
Regular 9-orthoplex
Enneacross
9-orthoplex.svg
Orthogonal projection
inside Petrie polygon
TypeRegular 9-polytope
Family orthoplex
Schläfli symbol {37,4}
{36,31,1}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
8-faces512 {37} 8-simplex t0.svg
7-faces2304 {36} 7-simplex t0.svg
6-faces4608 {35} 6-simplex t0.svg
5-faces5376 {34} 5-simplex t0.svg
4-faces4032 {33} 4-simplex t0.svg
Cells2016 {3,3} 3-simplex t0.svg
Faces672 {3} 2-simplex t0.svg
Edges144
Vertices18
Vertex figure Octacross
Petrie polygon Octadecagon
Coxeter groups C9, [37,4]
D9, [36,1,1]
Dual 9-cube
Properties convex, Hanner polytope

In geometry, a 9-orthoplex or 9-cross polytope, is a regular 9-polytope with 18 vertices, 144 edges, 672 triangle faces, 2016 tetrahedron cells, 4032 5-cell 4-faces, 5376 5-simplex 5-faces, 4608 6-simplex 6-faces, 2304 7-simplex 7-faces, and 512 8-simplex 8-faces.

Contents

It has two constructed forms, the first being regular with Schläfli symbol {37,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {36,31,1} or Coxeter symbol 611.

It is one of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 9-hypercube or enneract.

Alternate names

Construction

There are two Coxeter groups associated with the 9-orthoplex, one regular, dual of the enneract with the C9 or [4,37] symmetry group, and a lower symmetry with two copies of 8-simplex facets, alternating, with the D9 or [36,1,1] symmetry group.

Cartesian coordinates

Cartesian coordinates for the vertices of a 9-orthoplex, centered at the origin, are

(±1,0,0,0,0,0,0,0,0), (0,±1,0,0,0,0,0,0,0), (0,0,±1,0,0,0,0,0,0), (0,0,0,±1,0,0,0,0,0), (0,0,0,0,±1,0,0,0,0), (0,0,0,0,0,±1,0,0,0), (0,0,0,0,0,0,±1,0,0), (0,0,0,0,0,0,0,±1,0), (0,0,0,0,0,0,0,0,±1)

Every vertex pair is connected by an edge, except opposites.

Images

orthographic projections
B9B8B7
9-cube t8.svg 9-cube t8 B8.svg 9-cube t8 B7.svg
[18][16][14]
B6B5
9-cube t8 B6.svg 9-cube t8 B5.svg
[12][10]
B4B3B2
9-cube t8 B4.svg 9-cube t8 B3.svg 9-cube t8 B2.svg
[8][6][4]
A7A5A3
[8][6][4]

Notes

References

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compoundsPolytope operations