Hanner polytope

Last updated

In geometry, a Hanner polytope is a convex polytope constructed recursively by Cartesian product and polar dual operations. Hanner polytopes are named after Olof Hanner, who introduced them in 1956. [1]

Contents

Construction

The Hanner polytopes are constructed recursively by the following rules: [2]

They are exactly the polytopes that can be constructed using only these rules: that is, every Hanner polytope can be formed from line segments by a sequence of product and dual operations. [2]

Alternatively and equivalently to the polar dual operation, the Hanner polytopes may be constructed by Cartesian products and direct sums, the dual of the Cartesian products. This direct sum operation combines two polytopes by placing them in two linearly independent subspaces of a larger space and then constructing the convex hull of their union. [3] [4]

Examples

The three-dimensional cube and its dual, the octahedron, the two three-dimensional Hanner polytopes Dual Cube-Octahedron.svg
The three-dimensional cube and its dual, the octahedron, the two three-dimensional Hanner polytopes
Schlegel diagram of the octahedral prism Octahedral prism.png
Schlegel diagram of the octahedral prism

A cube is a Hanner polytope, and can be constructed as a Cartesian product of three line segments. Its dual, the octahedron, is also a Hanner polytope, the direct sum of three line segments. In three dimensions all Hanner polytopes are combinatorially equivalent to one of these two types of polytopes. [5] In higher dimensions the hypercubes and cross polytopes, analogues of the cube and octahedron, are again Hanner polytopes. However, more examples are possible. For instance, the octahedral prism, a four-dimensional prism with an octahedron as its base is also a Hanner polytope, as is its dual, the cubical bipyramid.

Properties

Coordinate representation

Every Hanner polytope can be given vertex coordinates that are 0, 1, or 1. [6] More explicitly, if P and Q are Hanner polytopes with coordinates in this form, then the coordinates of the vertices of the Cartesian product of P and Q are formed by concatenating the coordinates of a vertex in P with the coordinates of a vertex in Q. The coordinates of the vertices of the direct sum of P and Q are formed either by concatenating the coordinates of a vertex in P with a vector of zeros, or by concatenating a vector of zeros with the coordinates of a vertex in Q.

Because the polar dual of a Hanner polytope is another Hanner polytope, the Hanner polytopes have the property that both they and their duals have coordinates in {0,1,1}. [6]

Number of faces

Every Hanner polytope is centrally symmetric, and has exactly 3d nonempty faces (including the polytope itself as a face but not including the empty set). For instance, the cube has 8 vertices, 12 edges, 6 squares, and 1 cube (itself) as faces; 8 + 12 + 6 + 1 = 27 = 33. The Hanner polytopes form an important class of examples for Kalai's 3d conjecture that all centrally symmetric polytopes have at least 3d nonempty faces. [3]

Pairs of opposite facets and vertices

In a Hanner polytope, every two opposite facets are disjoint, and together include all of the vertices of the polytope, so that the convex hull of the two facets is the whole polytope. [6] [7] As a simple consequence of this fact, all facets of a Hanner polytope have the same number of vertices as each other (half the number of vertices of the whole polytope). However, the facets may not all be isomorphic to each other. For instance, in the octahedral prism, two of the facets are octahedra, and the other eight facets are triangular prisms. Dually, in every Hanner polytope, every two opposite vertices touch disjoint sets of facets, and together touch all of the facets of the polytope.

Mahler volume

The Mahler volume of a Hanner polytope (the product of its volume and the volume of its polar dual) is the same as for a cube or cross polytope. If the Mahler conjecture is true, these polytopes are the minimizers of Mahler volume among all the centrally symmetric convex bodies. [8]

Helly property

The translates of a hypercube (or of an affine transformation of it, a parallelotope) form a Helly family: every set of translates that have nonempty pairwise intersections has a nonempty intersection. Moreover, these are the only convex bodies with this property. [9] For any other centrally symmetric convex polytope K, Hanner (1956) defined I(K) to be the smallest number of translates of K that do not form a Helly family (they intersect pairwise but have an empty intersection). He showed that I(K) is either three or four, and gave the Hanner polytopes as examples of polytopes for which it is four. Hansen & Lima (1981) later showed that this property can be used to characterize the Hanner polytopes: they are (up to affine transformation) exactly the polytopes for which I(K) > 3. [10]

Combinatorial enumeration

The number of combinatorial types of Hanner polytopes of dimension d is the same as the number of simple series–parallel graphs with d unlabeled edges. [4] For d = 1, 2, 3, ... it is:

1, 1, 2, 4, 8, 18, 40, 94, 224, 548, ... (sequence A058387 in the OEIS ).

A more explicit bijection between the Hanner polytopes of dimension d and the cographs with d vertices is given by Reisner (1991). For this bijection, the Hanner polytopes are assumed to be represented geometrically using coordinates in {0,1,1} rather than as combinatorial equivalence classes; in particular, there are two different geometric forms of a Hanner polytope even in two dimensions, the square with vertex coordinates (±1,±1) and the diamond with vertex coordinates (0,±1) and (±1,0). Given a d-dimensional polytope with vertex coordinates in {0,1,1}, Reisner defines an associated graph whose d vertices correspond to the unit vectors of the space containing the polytope, and for which two vectors are connected by an edge if their sum lies outside the polytope. He observes that the graphs of Hanner polytopes are cographs, which he characterizes in two ways: the graphs with no induced path of length three, and the graphs whose induced subgraphs are all either disconnected or the complements of disconnected graphs. Conversely, every cograph can be represented in this way by a Hanner polytope. [6]

Hanner spaces

The Hanner polytopes are the unit balls of a family of finite-dimensional Banach spaces called Hanner spaces. [7] The Hanner spaces are the spaces that can be built up from one-dimensional spaces by and combinations. [1]

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

<span class="mw-page-title-main">Cube</span> Solid object with six equal square faces

In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex.

<span class="mw-page-title-main">Dual polyhedron</span> Polyhedron associated with another by swapping vertices for faces

In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with 8 triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Polyhedron</span> 3D shape with flat faces, straight edges and sharp corners

In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.

<span class="mw-page-title-main">Hypercube</span> Convex polytope, the n-dimensional analogue of a square and a cube

In geometry, a hypercube is an n-dimensional analogue of a square and a cube. It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length. A unit hypercube's longest diagonal in n dimensions is equal to .

<span class="mw-page-title-main">Schläfli symbol</span> Notation that defines regular polytopes and tessellations

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

<span class="mw-page-title-main">Rectification (geometry)</span> Operation in Euclidean geometry

In Euclidean geometry, rectification, also known as critical truncation or complete-truncation, is the process of truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points. The resulting polytope will be bounded by vertex figure facets and the rectified facets of the original polytope.

<span class="mw-page-title-main">Runcinated 5-cell</span>

In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.

<span class="mw-page-title-main">Rectified 5-cell</span> Uniform polychoron

In four-dimensional geometry, the rectified 5-cell is a uniform 4-polytope composed of 5 regular tetrahedral and 5 regular octahedral cells. Each edge has one tetrahedron and two octahedra. Each vertex has two tetrahedra and three octahedra. In total it has 30 triangle faces, 30 edges, and 10 vertices. Each vertex is surrounded by 3 octahedra and 2 tetrahedra; the vertex figure is a triangular prism.

<span class="mw-page-title-main">Tetrahedral-octahedral honeycomb</span> Quasiregular space-filling tesselation

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

<span class="mw-page-title-main">Truncated 24-cells</span>

In geometry, a truncated 24-cell is a uniform 4-polytope formed as the truncation of the regular 24-cell.

<span class="mw-page-title-main">Expansion (geometry)</span> Geometric operation on convex polytopes

In geometry, expansion is a polytope operation where facets are separated and moved radially apart, and new facets are formed at separated elements. Equivalently this operation can be imagined by keeping facets in the same position but reducing their size.

<span class="mw-page-title-main">Cantellated 5-cell</span>

In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation of the regular 5-cell.

<span class="mw-page-title-main">Uniform polytope</span> Isogonal polytope with uniform facets

In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons.

<span class="mw-page-title-main">Simple polytope</span> N-dimensional polytope with vertices adjacent to N facets

In geometry, a d-dimensional simple polytope is a d-dimensional polytope each of whose vertices are adjacent to exactly d edges. The vertex figure of a simple d-polytope is a (d – 1)-simplex.

Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes.

In geometry and polyhedral combinatorics, the Kleetope of a polyhedron or higher-dimensional convex polytope P is another polyhedron or polytope PK formed by replacing each facet of P with a shallow pyramid. Kleetopes are named after Victor Klee.

In geometry, Kalai's 3d conjecture is a conjecture on the polyhedral combinatorics of centrally symmetric polytopes, made by Gil Kalai in 1989. It states that every d-dimensional centrally symmetric polytope has at least 3d nonempty faces.

In polyhedral combinatorics, the Gale transform turns the vertices of any convex polytopes into a set of vectors or points in a space of a different dimension, the Gale diagram of the polytope. It can be used to describe high-dimensional polytopes with few vertices, by transforming them into sets of points in a space of a much lower dimension. The process can also be reversed, to construct polytopes with desired properties from their Gale diagrams. The Gale transform and Gale diagram are named after David Gale, who introduced these methods in a 1956 paper on neighborly polytopes.

References

  1. 1 2 Hanner, Olof (1956), "Intersections of translates of convex bodies", Mathematica Scandinavica, 4: 65–87, MR   0082696 .
  2. 1 2 Freij, Ragnar (2012), Topics in algorithmic, enumerative and geometric combinatorics (PDF), Ph.D. thesis, Department of Mathematical Sciences, Chalmers Institute of Technology.
  3. 1 2 Kalai, Gil (1989), "The number of faces of centrally-symmetric polytopes", Graphs and Combinatorics , 5 (1): 389–391, doi:10.1007/BF01788696, MR   1554357 .
  4. 1 2 Sanyal, Raman; Werner, Axel; Ziegler, Günter M. (2009), "On Kalai's conjectures concerning centrally symmetric polytopes", Discrete & Computational Geometry , 41 (2): 183–198, arXiv: 0708.3661 , doi:10.1007/s00454-008-9104-8, MR   2471868 /
  5. Kozachok, Marina (2012), "Perfect prismatoids and the conjecture concerning with face numbers of centrally symmetric polytopes", Yaroslavl International Conference "Discrete Geometry" dedicated to the centenary of A.D.Alexandrov (Yaroslavl, August 13-18, 2012) (PDF), P.G. Demidov Yaroslavl State University, International B.N. Delaunay Laboratory, pp. 46–49[ permanent dead link ].
  6. 1 2 3 4 Reisner, S. (1991), "Certain Banach spaces associated with graphs and CL-spaces with 1-unconditional bases", Journal of the London Mathematical Society , Second Series, 43 (1): 137–148, doi:10.1112/jlms/s2-43.1.137, MR   1099093 .
  7. 1 2 Martini, H.; Swanepoel, K. J.; de Wet, P. Oloff (2009), "Absorbing angles, Steiner minimal trees, and antipodality", Journal of Optimization Theory and Applications, 143 (1): 149–157, arXiv: 1108.5046 , doi:10.1007/s10957-009-9552-1, MR   2545946 .
  8. Kim, Jaegil (2014), "Minimal volume product near Hanner polytopes", Journal of Functional Analysis, 266 (4): 2360–2402, arXiv: 1212.2544 , doi:10.1016/j.jfa.2013.08.008, MR   3150164 .
  9. Sz.-Nagy, Béla (1954), "Ein Satz über Parallelverschiebungen konvexer Körper", Acta Universitatis Szegediensis, 15: 169–177, MR   0065942, archived from the original on 2016-03-04, retrieved 2013-05-19.
  10. Hansen, Allan B.; Lima, Ȧsvald (1981), "The structure of finite-dimensional Banach spaces with the 3.2. intersection property", Acta Mathematica , 146 (1–2): 1–23, doi: 10.1007/BF02392457 , MR   0594626 .