Triangular prism | |
---|---|
Type | Prism Semiregular polyhedron Uniform polyhedron |
Faces | 2 triangles 3 squares |
Edges | 9 |
Vertices | 6 |
Symmetry group | D3h |
Dual polyhedron | Triangular bipyramid |
In geometry, a triangular prism or trigonal prism [1] is a prism with 2 triangular bases. If the edges pair with each triangle's vertex and if they are perpendicular to the base, it is a right triangular prism. A right triangular prism may be both semiregular and uniform.
The triangular prism can be used in constructing another polyhedron. Examples are some of the Johnson solids, the truncated right triangular prism, and Schönhardt polyhedron.
A triangular prism has 6 vertices, 9 edges, and 5 faces. Every prism has 2 congruent faces known as its bases, and the bases of a triangular prism are triangles. The triangle has 3 vertices, each of which pairs with another triangle's vertex, making up another 3 edges. These edges form 3 parallelograms as other faces. [2] If the prism's edges are perpendicular to the base, the lateral faces are rectangles, and the prism is called a right triangular prism. [3] This prism may also be considered a special case of a wedge. [4]
If the base is equilateral and the lateral faces are square, then the right triangular prism is semiregular. A semiregular prism means that the number of its polygonal base's edges equals the number of its square faces. [5] More generally, the triangular prism is uniform. This means that a triangular prism has regular faces and has an isogonal symmetry on vertices. [6] The three-dimensional symmetry group of a right triangular prism is dihedral group D3h of order 12: the appearance is unchanged if the triangular prism is rotated one- and two- thirds of a full angle around its axis of symmetry passing through the center's base, and reflecting across a horizontal plane. The dual polyhedron of a triangular prism is a triangular bipyramid. The triangular bipyramid has the same symmetry as the triangular prism. [1] The dihedral angle between two adjacent square faces is the internal angle of an equilateral triangle π/3 = 60°, and that between a square and a triangle is π/2 = 90°. [7]
The volume of any prism is the product of the area of the base and the distance between the two bases. [8] In the case of a triangular prism, its base is a triangle, so its volume can be calculated by multiplying the area of a triangle and the length of the prism:
where b is the length of one side of the triangle, h is the length of an altitude drawn to that side, and l is the distance between the triangular faces. [9] In the case of a right triangular prism, where all its edges are equal in length l, its volume can be calculated as the product of the equilateral triangle's area and length l: [10]
The triangular prism can be represented as the prism graph Π3. More generally, the prism graph Πn represents the n-sided prism. [11]
Beyond the triangular bipyramid as its dual polyhedron, many other polyhedrons are related to the triangular prism. A Johnson solid is a convex polyhedron with regular faces, and this definition is sometimes omitted uniform polyhedrons such as Archimedean solids, Catalan solids, prisms and antiprisms. [12] There are 6 Johnson solids with their construction involving the triangular prism: elongated triangular pyramid, elongated triangular bipyramid, gyrobifastigium, augmented triangular prism, biaugmented triangular prism, and triaugmented triangular prism. The elongated triangular pyramid and the gyroelongated triangular pyramid are constructed by attaching tetrahedron onto the base of a triangular prism. The augmented triangular prism, biaugmented triangular prism, and triaugmented triangular prism are constructed by attaching equilateral square pyramids onto the square face of the prism. The gyrobifastigium is constructed by attaching two triangular prisms along one of its square faces. [13]
A truncated triangular prism is a triangular prism constructed by truncating its part at an oblique angle. As a result, the two bases are not parallel and every height has a different edge length. If the edges connecting bases are perpendicular to one of its bases, the prism is called a truncated right triangular prism. Given that A is the area of the triangular prism's base, and the three heights h1, h2, and h3, its volume can be determined in the following formula: [14]
Schönhardt polyhedron is another polyhedron constructed from a triangular prism with equilateral triangle bases. This way, one of its bases rotates around the prism's centerline and breaks the square faces into skew polygons. Each square face can be re-triangulated with two triangles to form a non-convex dihedral angle. [15] As a result, the Schönhardt polyhedron cannot be triangulated by a partition into tetrahedra. It is also that the Schönhardt polyhedron has no internal diagonals. [16] It is named after German mathematician Erich Schönhardt, who described it in 1928, although the related structure was exhibited by artist Karlis Johansons in 1921. [17]
There are 4 uniform compounds of triangular prisms. They are compound of four triangular prisms, compound of eight triangular prisms, compound of ten triangular prisms, compound of twenty triangular prisms. [18]
There are 9 uniform honeycombs that include triangular prism cells:
The triangular prism is first in a dimensional series of semiregular polytopes. Each progressive uniform polytope is constructed vertex figure of the previous polytope. Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes (equilateral triangles and squares in the case of the triangular prism). In Coxeter's notation the triangular prism is given the symbol −121.
k21 figures in n dimensions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Space | Finite | Euclidean | Hyperbolic | ||||||||
En | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Coxeter group | E3=A2A1 | E4=A4 | E5=D5 | E6 | E7 | E8 | E9 = = E8+ | E10 = = E8++ | |||
Coxeter diagram | |||||||||||
Symmetry | [3−1,2,1] | [30,2,1] | [31,2,1] | [32,2,1] | [33,2,1] | [34,2,1] | [35,2,1] | [36,2,1] | |||
Order | 12 | 120 | 1,920 | 51,840 | 2,903,040 | 696,729,600 | ∞ | ||||
Graph | - | - | |||||||||
Name | −121 | 021 | 121 | 221 | 321 | 421 | 521 | 621 |
The triangular prism exists as cells of a number of four-dimensional uniform 4-polytopes, including:
In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.
A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.
In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.
In geometry, a prism is a polyhedron comprising an n-sided polygon base, a second base which is a translated copy of the first, and n other faces, necessarily all parallelograms, joining corresponding sides of the two bases. All cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids.
In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.
In geometry, the triangular bipyramid is the hexahedron with six triangular faces, constructed by attaching two tetrahedrons face-to-face. The same shape is also called the triangular dipyramid or trigonal bipyramid. If these tetrahedrons are regular, all faces of triangular bipyramid are equilateral. It is an example of a deltahedron and of a Johnson solid.
The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.
In geometry, the pentagonal bipyramid is a polyhedron with 10 triangular faces. It is constructed by attaching two pentagonal pyramids to each of their bases. If the triangular faces are equilateral, the pentagonal bipyramid is an example of deltahedra, and of Johnson solid.
In geometry, the elongated triangular pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a tetrahedron by attaching a triangular prism to its base. Like any elongated pyramid, the resulting solid is topologically self-dual.
In geometry, the elongated square bipyramid is the polyhedron constructed by attaching two equilateral square pyramids onto a cube's faces that are opposite each other. It can also be seen as 4 lunes linked together with squares to squares and triangles to triangles. It is also been named the pencil cube or 12-faced pencil cube due to its shape.
In geometry, the elongated triangular orthobicupola or cantellated triangular prism is a polyhedron constructed by attaching two regular triangular cupola into the base of a regular hexagonal prism. It is an example of Johnson solid.
In geometry, the elongated triangular gyrobicupola is a polyhedron constructed by attaching two regular triangular cupolas to the base of a regular hexagonal prism, with one of them rotated in . It is an example of Johnson solid.
In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.
In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent.
In geometry, the hexagonal prism is a prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 faces, 18 edges, and 12 vertices.
The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.
In geometry, a near-miss Johnson solid is a strictly convex polyhedron whose faces are close to being regular polygons but some or all of which are not precisely regular. Thus, it fails to meet the definition of a Johnson solid, a polyhedron whose faces are all regular, though it "can often be physically constructed without noticing the discrepancy" between its regular and irregular faces. The precise number of near-misses depends on how closely the faces of such a polyhedron are required to approximate regular polygons.
The triangular prismatic honeycomb or triangular prismatic cellulation is a space-filling tessellation in Euclidean 3-space. It is composed entirely of triangular prisms.