Compound of twenty triangular prisms

Last updated
Compound of twenty triangular prisms
UC33-20 triangular prisms.png
Type Uniform compound
IndexUC33
Polyhedra20 triangular prisms
Faces40 triangles, 60 squares
Edges180
Vertices60
Symmetry group icosahedral (Ih)
Subgroup restricting to one constituent3-fold dihedral (D3)

This uniform polyhedron compound is a symmetric arrangement of 20 triangular prisms, aligned in pairs with the axes of three-fold rotational symmetry of an icosahedron.

It results from composing the two enantiomorphs of the compound of 10 triangular prisms. In doing so, the vertices of the two enantiomorphs coincide, with the result that the full compound has two triangular prisms incident on each of its vertices.

This compound shares its vertex arrangement with three uniform polyhedra as follows:

Rhombidodecadodecahedron convex hull.png
convex hull
Rhombidodecadodecahedron.png
Rhombidodecadodecahedron
Icosidodecadodecahedron.png
Icosidodecadodecahedron
Rhombicosahedron.png
Rhombicosahedron
UC32-10 triangular prisms.png
Compound of ten triangular prisms
UC33-20 triangular prisms.png
Compound of twenty triangular prisms

Related Research Articles

In geometry, an octahedron is a polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Regular octahedra occur in nature as crystal structures. Many types of irregular octahedra also exist, including both convex and non-convex shapes.

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

<span class="mw-page-title-main">Rhombicosidodecahedron</span> Archimedean solid

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

<span class="mw-page-title-main">Triangular prism</span> Prism with a 3-sided base

In geometry, a triangular prism or trigonal prism is a prism with 2 triangular bases. If the edges pair with each triangle's vertex and if they are perpendicular to the base, it is a right triangular prism. A right triangular prism may be both semiregular and uniform.

<span class="mw-page-title-main">Great disnub dirhombidodecahedron</span> Polyhedron with 204 faces

In geometry, the great disnub dirhombidodecahedron, also called Skilling's figure, is a degenerate uniform star polyhedron.

<span class="mw-page-title-main">Octahemioctahedron</span> Uniform star polyhedron with 12 faces

In geometry, the octahemioctahedron or allelotetratetrahedron is a nonconvex uniform polyhedron, indexed as U3. It has 12 faces (8 triangles and 4 hexagons), 24 edges and 12 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Rhombicosahedron</span>

In geometry, the rhombicosahedron is a nonconvex uniform polyhedron, indexed as U56. It has 50 faces (30 squares and 20 hexagons), 120 edges and 60 vertices. Its vertex figure is an antiparallelogram.

<span class="mw-page-title-main">Truncated great dodecahedron</span> Polyhedron with 24 faces

In geometry, the truncated great dodecahedron is a nonconvex uniform polyhedron, indexed as U37. It has 24 faces (12 pentagrams and 12 decagons), 90 edges, and 60 vertices. It is given a Schläfli symbol t{5,5/2}.

<span class="mw-page-title-main">Great dodecicosidodecahedron</span> Polyhedron with 44 faces

In geometry, the great dodecicosidodecahedron (or great dodekicosidodecahedron) is a nonconvex uniform polyhedron, indexed as U61. It has 44 faces (20 triangles, 12 pentagrams and 12 decagrams), 120 edges and 60 vertices.

<span class="mw-page-title-main">Rhombidodecadodecahedron</span> Polyhedron with 54 faces

In geometry, the rhombidodecadodecahedron is a nonconvex uniform polyhedron, indexed as U38. It has 54 faces (30 squares, 12 pentagons and 12 pentagrams), 120 edges and 60 vertices. It is given a Schläfli symbol t0,2{52,5}, and by the Wythoff construction this polyhedron can also be named a cantellated great dodecahedron.

<span class="mw-page-title-main">Icosidodecadodecahedron</span> Polyhedron with 44 faces

In geometry, the icosidodecadodecahedron (or icosified dodecadodecahedron) is a nonconvex uniform polyhedron, indexed as U44. It has 44 faces (12 pentagons, 12 pentagrams and 20 hexagons), 120 edges and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Nonconvex great rhombicosidodecahedron</span> Polyhedron with 62 faces

In geometry, the nonconvex great rhombicosidodecahedron is a nonconvex uniform polyhedron, indexed as U67. It has 62 faces (20 triangles, 30 squares and 12 pentagrams), 120 edges, and 60 vertices. It is also called the quasirhombicosidodecahedron. It is given a Schläfli symbol rr{53,3}. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Prismatic uniform polyhedron</span> Uniform polyhedron with dihedral symmetry

In geometry, a prismatic uniform polyhedron is a uniform polyhedron with dihedral symmetry. They exist in two infinite families, the uniform prisms and the uniform antiprisms. All have their vertices in parallel planes and are therefore prismatoids.

<span class="mw-page-title-main">Compound of twenty octahedra</span> Polyhedral compound

The compound of twenty octahedra is a uniform polyhedron compound. It's composed of a symmetric arrangement of 20 octahedra. It is a special case of the compound of 20 octahedra with rotational freedom, in which pairs of octahedral vertices coincide.

<span class="mw-page-title-main">Compound of four triangular prisms</span> Polyhedral compound

This uniform polyhedron compound is a chiral symmetric arrangement of 4 triangular prisms, aligned with the axes of three-fold rotational symmetry of an octahedron.

<span class="mw-page-title-main">Compound of eight triangular prisms</span> Polyhedral compound

This uniform polyhedron compound is a symmetric arrangement of 8 triangular prisms, aligned in pairs with the axes of three-fold rotational symmetry of an octahedron. It results from composing the two enantiomorphs of the compound of 4 triangular prisms.

<span class="mw-page-title-main">Compound of twelve pentagrammic prisms</span> Polyhedral compound

This uniform polyhedron compound is a symmetric arrangement of 12 pentagrammic prisms, aligned in pairs with the axes of fivefold rotational symmetry of a dodecahedron.

<span class="mw-page-title-main">Compound of twelve pentagonal prisms</span> Polyhedral compound

This uniform polyhedron compound is a symmetric arrangement of 12 pentagonal prisms, aligned in pairs with the axes of fivefold rotational symmetry of a dodecahedron.

<span class="mw-page-title-main">Prismatic compound of antiprisms</span> Polyhedral compound

In geometry, a prismatic compound of antiprism is a category of uniform polyhedron compound. Each member of this infinite family of uniform polyhedron compounds is a symmetric arrangement of antiprisms sharing a common axis of rotational symmetry.

References