Rhombicuboctahedral prism

Last updated
Rhombicuboctahedral prism
Type Prismatic uniform polychoron
Uniform index53
Schläfli symbol t0,2,3{3,4,2} or rr{3,4}×{}
s2,3{3,4,2} or s2{3,4}×{}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Cells28 total:
2 rr{4,3} or s2{3,4}
8 {}x{3}
18 {4,3}
Faces100 total:
16 {3}
84 {4}
Edges120
Vertices48
Vertex figure Rhombicuboctahedron prism verf.png
Trapezoidal pyramid
Symmetry group [4,3,2], order 96
[3+,4,2], order 48
Properties convex

In geometry, a rhombicuboctahedral prism is a convex uniform polychoron (four-dimensional polytope).

Contents

It is one of 18 convex uniform polyhedral prisms created by using uniform prisms to connect pairs of Platonic solids or Archimedean solids in parallel hyperplanes.

Images

Small rhombicuboctahedral prism net.png
Net
Rhombicuboctahedral prism.png
Schlegel diagram
One rhombicuboctahedron and triangular prisms show

Alternative names

Runcic snub cubic hosochoron

Runcic snub cubic hosochoron
Schläfli symbol s3{2,4,3}
Coxeter diagram CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Cells16 total:
2 t{3,3} Truncated tetrahedron.png
6 {3,3} Tetrahedron.png
8 tricup Triangular cupola.png
Faces52 total:
32 {3}
12{4}
8 {6}
Edges60
Vertices24
Vertex figure Runcic snub 243 verf.png
Symmetry group [4,3,2+], order 48
Properties convex

A related polychoron is the runcic snub cubic hosochoron, also known as a parabidiminished rectified tesseract , truncated tetrahedral alterprism, or truncated tetrahedral cupoliprism, s3{2,4,3}, CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png. It is made from 2 truncated tetrahedra, 6 tetrahedra, and 8 triangular cupolae in the gaps, for a total of 16 cells, 52 faces, 60 edges, and 24 vertices. It is vertex-transitive, and equilateral, but not uniform, due to the cupolae. It has symmetry [2+,4,3], order 48. [1] [2] [3]

It is related to the 16-cell in its s{2,4,3}, CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png construction.

It can also be seen as a prismatic polytope with two parallel truncated tetrahedra in dual positions, as seen in the compound of two truncated tetrahedra. Triangular cupolae connect the triangular and hexagonal faces, and the tetrahedral connect edge-wise between.

Runcic snub cubic hosochoron.png
Projection
(triangular cupolae hidden)
Truncated tetrahedral cupoliprism net.png
Net

Related Research Articles

<span class="mw-page-title-main">Uniform 4-polytope</span> Class of 4-dimensional polytopes

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

<span class="mw-page-title-main">Runcinated 5-cell</span> Four-dimensional geometrical object

In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.

<span class="mw-page-title-main">Runcinated tesseracts</span>

In four-dimensional geometry, a runcinated tesseract is a convex uniform 4-polytope, being a runcination of the regular tesseract.

<span class="mw-page-title-main">Rectified 5-cell</span> Uniform polychoron

In four-dimensional geometry, the rectified 5-cell is a uniform 4-polytope composed of 5 regular tetrahedral and 5 regular octahedral cells. Each edge has one tetrahedron and two octahedra. Each vertex has two tetrahedra and three octahedra. In total it has 30 triangle faces, 30 edges, and 10 vertices. Each vertex is surrounded by 3 octahedra and 2 tetrahedra; the vertex figure is a triangular prism.

<span class="mw-page-title-main">Tetrahedral-octahedral honeycomb</span> Quasiregular space-filling tesselation

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

In geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract.

<span class="mw-page-title-main">Truncated 5-cell</span>

In geometry, a truncated 5-cell is a uniform 4-polytope formed as the truncation of the regular 5-cell.

<span class="mw-page-title-main">Tetrahedral prism</span> Uniform 4-polytope

In geometry, a tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 6 polyhedral cells: 2 tetrahedra connected by 4 triangular prisms. It has 14 faces: 8 triangular and 6 square. It has 16 edges and 8 vertices.

<span class="mw-page-title-main">Cantellated 5-cell</span>

In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation of the regular 5-cell.

<span class="mw-page-title-main">Runcinated 24-cells</span>

In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.

<span class="mw-page-title-main">Cantellated 120-cell</span> 4D geometry item

In four-dimensional geometry, a cantellated 120-cell is a convex uniform 4-polytope, being a cantellation of the regular 120-cell.

<span class="mw-page-title-main">Truncated tetrahedral prism</span>

In geometry, a truncated tetrahedral prism is a convex uniform polychoron. This polychoron has 10 polyhedral cells: 2 truncated tetrahedra connected by 4 triangular prisms and 4 hexagonal prisms. It has 24 faces: 8 triangular, 18 square, and 8 hexagons. It has 48 edges and 24 vertices.

<span class="mw-page-title-main">Icosahedral prism</span>

In geometry, an icosahedral prism is a convex uniform 4-polytope. This 4-polytope has 22 polyhedral cells: 2 icosahedra connected by 20 triangular prisms. It has 70 faces: 30 squares and 40 triangles. It has 72 edges and 24 vertices.

In 4-dimensional geometry, a truncated octahedral prism or omnitruncated tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 16 cells It has 64 faces, and 96 edges and 48 vertices.

<span class="mw-page-title-main">Truncated dodecahedral prism</span> Convex uniform polychoron

In geometry, a truncated dodecahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated cubic prism</span>

In geometry, a truncated cubic prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated cuboctahedral prism</span>

In geometry, a truncated cuboctahedral prism or great rhombicuboctahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated icosahedral prism</span>

In geometry, a truncated icosahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated icosidodecahedral prism</span>

In geometry, a truncated icosidodecahedral prism or great rhombicosidodecahedral prism is a convex uniform 4-polytope.

References

  1. Klitzing, Richard. "4D tutcup".
  2. Category S1: Simple Scaliforms Tutcup
  3. http://bendwavy.org/klitzing/pdf/artConvSeg_8.pdf 4.55 truncated tetrahedron || inverse truncated tetrahedron