Triangular cupola

Last updated
Triangular cupola
Triangular cupola.png
Type Johnson
J2J3J4
Faces 4 triangles
3 squares
1 hexagon
Edges 15
Vertices 9
Vertex configuration
Symmetry group
Properties convex
Net
Triangular cupola (symmetric net).svg

In geometry, the triangular cupola is the cupola with hexagon as its base and triangle as its top. If the edges are equal in length, the triangular cupola is the Johnson solid. It can be seen as half a cuboctahedron. Many polyhedrons can be constructed involving the attachment of the base of a triangular cupola.

Contents

Properties

The triangular cupola has 4 triangles, 3 squares, and 1 hexagon as their faces; the hexagon is the base and one of the four triangles is the top. If all of the edges are equal in length, the triangles and the hexagon becomes regular; the edge length of that hexagon is equal to the edge length of both squares and triangles. [1] [2] The dihedral angle between each triangle and the hexagon is approximately , that between each square and the hexagon is , and that between square and triangle is . [3] A convex polyhedron in which all of the faces are regular is a Johnson solid, and the triangular cupola is among them, enumerated as the third Johnson solid . [2]

Given that is the edge length of a triangular cupola. Its surface area can be calculated by adding the area of four equilateral triangles, three squares, and one hexagon: [1]

Its height and volume is: [4] [1]

3D model of a triangular cupola J3 triangular cupola.stl
3D model of a triangular cupola

It has an axis of symmetry passing through the center of its both top and base, which is symmetrical by rotating around it at one- and two-thirds of a full-turn angle. It is also mirror-symmetric relative to any perpendicular plane passing through a bisector of the hexagonal base. Therefore, it has pyramidal symmetry, the cyclic group of order 6. [3]

The dual polyhedron of a triangular cupola Dual triangular cupola.png
The dual polyhedron of a triangular cupola

The dual of the triangular cupola is the polyhedron with 6 triangular and 3 kite faces.

The triangular cupola can be found in the construction of many polyhedrons. An example is the cuboctahedron in which the triangular cupola may be considered as its hemisphere. [5] A construction that involves the attachment of its base to another polyhedron is known as augmentation; attaching it to prisms or antiprisms is known as elongation or gyroelongation. [6] [7] Some of the other Johnson solids constructed in such a way are elongated triangular cupola , gyroelongated triangular cupola , triangular orthobicupola , elongated triangular orthobicupola , elongated triangular gyrobicupola , gyroelongated triangular bicupola , augmented truncated tetrahedron . [8]

The honeycomb Augmented triangular cupola.png
The honeycomb

The triangular cupola can be augmented by 3 square pyramids, leaving adjacent coplanar faces. It is not a Johnson solid because the faces are coplanar. Merging those coplanar triangles into larger ones, topologically this is another triangular cupola with isosceles trapezoidal side faces. If all the triangles are retained and the base hexagon is replaced by 6 triangles, it generates a coplanar deltahedron with 22 faces.

The triangular cupola can form a tessellation of space with square pyramids and/or octahedra, [9] the same way octahedra and cuboctahedra can fill space.

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Truncated cube</span> Archimedean solid with 14 regular faces

In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces, 36 edges, and 24 vertices.

<span class="mw-page-title-main">Truncated cuboctahedron</span> Archimedean solid in geometry

In geometry, the truncated cuboctahedron or great rhombicuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

<span class="mw-page-title-main">Gyroelongated square bipyramid</span> 17th Johnson solid

In geometry, the gyroelongated square bipyramid, heccaidecadeltahedron, or tetrakis square antiprism is a polyhedron with 16 triangular faces, constructed by attaching two equilateral square pyramids onto the face of a square antiprism. All of its triangular faces are equilateral, making it one of the eight convex deltahedra.

<span class="mw-page-title-main">Triakis icosahedron</span> Catalan solid with 60 faces

In geometry, the triakis icosahedron is an Archimedean dual solid, or a Catalan solid, with 60 isosceles triangle faces. Its dual is the truncated dodecahedron. It has also been called the kisicosahedron. It was first depicted, in a non-convex form with equilateral triangle faces, by Leonardo da Vinci in Luca Pacioli's Divina proportione, where it was named the icosahedron elevatum. The capsid of the Hepatitis A virus has the shape of a triakis icosahedron.

<span class="mw-page-title-main">Pentagonal icositetrahedron</span> Catalan polyhedron

In geometry, a pentagonal icositetrahedron or pentagonal icosikaitetrahedron is a Catalan solid which is the dual of the snub cube. In crystallography it is also called a gyroid.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.

<span class="mw-page-title-main">Gyroelongated square pyramid</span> 10th Johnson solid (13 faces)

In geometry, the gyroelongated square pyramid is the Johnson solid that can be constructed by attaching an equilateral square pyramid to a square antiprism. It occurs in the chemistry such as square antiprismatic molecular geometry.

<span class="mw-page-title-main">Square pyramid</span> Pyramid with a square base

In geometry, a square pyramid is a pyramid with a square base, having a total of five faces. If the apex of the pyramid is directly above the center of the square, it is a right square pyramid with four isosceles triangles; otherwise, it is an oblique square pyramid. When all of the pyramid's edges are equal in length, its triangles are all equilateral, and it is called an equilateral square pyramid.

<span class="mw-page-title-main">Square cupola</span> Cupola with octagonal base

In geometry, the square cupola the cupola with octagonal base. In the case of edges are equal in length, it is the Johnson solid, a convex polyhedron with faces are regular. It can be considered as half of the rhombicuboctahedron. It can be used to construct many polyhedrons, particularly in other Johnson solids.

<span class="mw-page-title-main">Gyroelongated square bicupola</span> 45th Johnson solid

In geometry, the gyroelongated square bicupola is the Johnson solid constructed by attaching two square cupolae on each base of octagonal antiprism. It has the property of chirality.

<span class="mw-page-title-main">Elongated square bipyramid</span> Cube capped by two square pyramids

In geometry, the elongated square bipyramid is the polyhedron constructed by attaching two equilateral square pyramids onto a cube's faces that are opposite each other. It can also be seen as 4 lunes linked together with squares to squares and triangles to triangles. It is also been named the pencil cube or 12-faced pencil cube due to its shape.

<span class="mw-page-title-main">Gyroelongated triangular cupola</span>

In geometry, the gyroelongated triangular cupola is one of the Johnson solids (J22). It can be constructed by attaching a hexagonal antiprism to the base of a triangular cupola (J3). This is called "gyroelongation", which means that an antiprism is joined to the base of a solid, or between the bases of more than one solid.

<span class="mw-page-title-main">Triangular orthobicupola</span> 27th Johnson solid; 2 triangular cupolae joined base-to-base

In geometry, the triangular orthobicupola is one of the Johnson solids. As the name suggests, it can be constructed by attaching two triangular cupolas along their bases. It has an equal number of squares and triangles at each vertex; however, it is not vertex-transitive. It is also called an anticuboctahedron, twisted cuboctahedron or disheptahedron. It is also a canonical polyhedron.

<span class="mw-page-title-main">Elongated triangular orthobicupola</span> Johnson solid with 20 faces

In geometry, the elongated triangular orthobicupola or cantellated triangular prism is one of the Johnson solids. As the name suggests, it can be constructed by elongating a triangular orthobicupola by inserting a hexagonal prism between its two halves. The resulting solid is superficially similar to the rhombicuboctahedron, with the difference that it has threefold rotational symmetry about its axis instead of fourfold symmetry.

<span class="mw-page-title-main">Gyroelongated triangular bicupola</span> 44th Johnson solid

In geometry, the gyroelongated triangular bicupola is one of the Johnson solids. As the name suggests, it can be constructed by gyroelongating a triangular bicupola by inserting a hexagonal antiprism between its congruent halves.

In geometry, a near-miss Johnson solid is a strictly convex polyhedron whose faces are close to being regular polygons but some or all of which are not precisely regular. Thus, it fails to meet the definition of a Johnson solid, a polyhedron whose faces are all regular, though it "can often be physically constructed without noticing the discrepancy" between its regular and irregular faces. The precise number of near-misses depends on how closely the faces of such a polyhedron are required to approximate regular polygons.

<span class="mw-page-title-main">First stellation of the rhombic dodecahedron</span>

In geometry, the first stellation of the rhombic dodecahedron is a self-intersecting polyhedron with 12 faces, each of which is a non-convex hexagon. It is a stellation of the rhombic dodecahedron and has the same outer shell and the same visual appearance as two other shapes: a solid, Escher's solid, with 48 triangular faces, and a polyhedral compound of three flattened octahedra with 24 overlapping triangular faces.

References

  1. 1 2 3 Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR   0290245.
  2. 1 2 Uehara, Ryuhei (2020). Introduction to Computational Origami: The World of New Computational Geometry. Springer. p. 62. doi:10.1007/978-981-15-4470-5. ISBN   978-981-15-4470-5. S2CID   220150682.
  3. 1 2 Johnson, Norman W. (1966). "Convex polyhedra with regular faces". Canadian Journal of Mathematics . 18: 169–200. doi: 10.4153/cjm-1966-021-8 . MR   0185507. S2CID   122006114. Zbl   0132.14603.
  4. Sapiña, R. "Area and volume of the Johnson solid ". Problemas y Ecuaciones (in Spanish). ISSN   2659-9899 . Retrieved 2020-09-08.
  5. Cromwell, Peter R. (1997). Polyhedra. Cambridge University Press. p. 86. ISBN   978-0-521-55432-9.
  6. Demey, Lorenz; Smessaert, Hans (2017). "Logical and Geometrical Distance in Polyhedral Aristotelian Diagrams in Knowledge Representation". Symmetry. 9 (10): 204. Bibcode:2017Symm....9..204D. doi: 10.3390/sym9100204 .
  7. Slobodan, Mišić; Obradović, Marija; Ðukanović, Gordana (2015). "Composite Concave Cupolae as Geometric and Architectural Forms" (PDF). Journal for Geometry and Graphics. 19 (1): 79–91.
  8. Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. Hindustan Book Agency. p. 8489. doi:10.1007/978-93-86279-06-4. ISBN   978-93-86279-06-4.
  9. "J3 honeycomb".