Sphenomegacorona

Last updated
Sphenomegacorona
Sphenomegacorona.png
Type Johnson
J87J88J89
Faces 16 triangles
2 squares
Edges 28
Vertices 12
Vertex configuration 2(34)
2(32.42)
2x2(35)
4(34.4)
Symmetry group C2v
Dual polyhedron -
Properties convex
Net
Johnson solid 88 net.png
3D model of a sphenomegacorona J88 sphenomegacorona.stl
3D model of a sphenomegacorona

In geometry, the sphenomegacorona is one of the Johnson solids (J88). It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

Contents

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids , Archimedean solids , prisms , or antiprisms ). They were named by Norman Johnson , who first listed these polyhedra in 1966. [1]

Johnson uses the prefix spheno- to refer to a wedge-like complex formed by two adjacent lunes, a lune being a square with equilateral triangles attached on opposite sides. Likewise, the suffix -megacorona refers to a crownlike complex of 12 triangles, contrasted with the smaller triangular complex that makes the sphenocorona. Joining both complexes together results in the sphenomegacorona. [1]

Cartesian coordinates

Let k ≈ 0.59463 be the smallest positive root of the polynomial

Then, Cartesian coordinates of a sphenomegacorona with edge length 2 are given by the union of the orbits of the points

under the action of the group generated by reflections about the xz-plane and the yz-plane. [2]

The surface area of a sphenomegacorona with edge length a can be calculated as:

and its volume as

where the decimal expansion of ξ is given by A334114. [3] [4]

Related Research Articles

<span class="mw-page-title-main">Elongated pentagonal pyramid</span> 9th Johnson solid (11 faces)

In geometry, the elongated pentagonal pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal pyramid by attaching a pentagonal prism to its base.

<span class="mw-page-title-main">Pentagonal rotunda</span> 6th Johnson solid (17 faces)

In geometry, the pentagonal rotunda is one of the Johnson solids. It can be seen as half of an icosidodecahedron, or as half of a pentagonal orthobirotunda. It has a total of 17 faces.

<span class="mw-page-title-main">Gyroelongated square cupola</span>

In geometry, the gyroelongated square cupola is one of the Johnson solids (J23). As the name suggests, it can be constructed by gyroelongating a square cupola (J4) by attaching an octagonal antiprism to its base. It can also be seen as a gyroelongated square bicupola (J45) with one square bicupola removed.

<span class="mw-page-title-main">Gyroelongated pentagonal rotunda</span>

In geometry, the gyroelongated pentagonal rotunda is one of the Johnson solids (J25). As the name suggests, it can be constructed by gyroelongating a pentagonal rotunda (J6) by attaching a decagonal antiprism to its base. It can also be seen as a gyroelongated pentagonal birotunda (J48) with one pentagonal rotunda removed.

<span class="mw-page-title-main">Pentagonal cupola</span> 5th Johnson solid (12 faces)

In geometry, the pentagonal cupola is one of the Johnson solids. It can be obtained as a slice of the rhombicosidodecahedron. The pentagonal cupola consists of 5 equilateral triangles, 5 squares, 1 pentagon, and 1 decagon.

<span class="mw-page-title-main">Snub square antiprism</span> 85th Johnson solid (26 faces)

In geometry, the snub square antiprism is the Johnson solid that can be constructed by snubbing the square antiprism. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids, although it is a relative of the icosahedron that has fourfold symmetry instead of threefold.

<span class="mw-page-title-main">Hebesphenomegacorona</span> 89th Johnson solid (21 faces)

In geometry, the hebesphenomegacorona is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids. It has 21 faces, 18 triangles and 3 squares, 33 edges, and 14 vertices.

<span class="mw-page-title-main">Sphenocorona</span> 86th Johnson solid (14 faces)

In geometry, the sphenocorona is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

<span class="mw-page-title-main">Disphenocingulum</span> 90th Johnson solid (22 faces)

In geometry, the disphenocingulum or pentakis elongated gyrobifastigium is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

<span class="mw-page-title-main">Bilunabirotunda</span> 91st Johnson solid (14 faces)

In geometry, the bilunabirotunda is one of the Johnson solids. A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra. They were named by Norman Johnson, who first listed these polyhedra in 1966.

<span class="mw-page-title-main">Triangular hebesphenorotunda</span> 92nd Johnson solid (20 faces)

In geometry, the triangular hebesphenorotunda is one of the Johnson solids.

<span class="mw-page-title-main">Elongated pentagonal cupola</span> 20th Johnson solid

In geometry, the elongated pentagonal cupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal cupola by attaching a decagonal prism to its base. The solid can also be seen as an elongated pentagonal orthobicupola with its "lid" removed.

<span class="mw-page-title-main">Gyroelongated pentagonal cupola</span>

In geometry, the gyroelongated pentagonal cupola is one of the Johnson solids (J24). As the name suggests, it can be constructed by gyroelongating a pentagonal cupola (J5) by attaching a decagonal antiprism to its base. It can also be seen as a gyroelongated pentagonal bicupola (J46) with one pentagonal cupola removed.

<span class="mw-page-title-main">Pentagonal orthobicupola</span> 30th Johnson solid; 2 pentagonal cupolae joined base-to-base

In geometry, the pentagonal orthobicupola is one of the Johnson solids. As the name suggests, it can be constructed by joining two pentagonal cupolae along their decagonal bases, matching like faces. A 36-degree rotation of one cupola before the joining yields a pentagonal gyrobicupola.

<span class="mw-page-title-main">Pentagonal gyrobicupola</span> 31st Johnson solid; 2 pentagonal cupolae joined base-to-base

In geometry, the pentagonal gyrobicupola is one of the Johnson solids. Like the pentagonal orthobicupola, it can be obtained by joining two pentagonal cupolae along their bases. The difference is that in this solid, the two halves are rotated 36 degrees with respect to one another.

<span class="mw-page-title-main">Gyroelongated pentagonal bicupola</span> 46th Johnson solid

In geometry, the gyroelongated pentagonal bicupola is one of the Johnson solids. As the name suggests, it can be constructed by gyroelongating a pentagonal bicupola by inserting a decagonal antiprism between its congruent halves.

<span class="mw-page-title-main">Pentagonal orthocupolarotunda</span> 32nd Johnson solid; pentagonal cupola and rotunda joined base-to-base

In geometry, the pentagonal orthocupolarotunda is one of the Johnson solids. As the name suggests, it can be constructed by joining a pentagonal cupola and a pentagonal rotunda along their decagonal bases, matching the pentagonal faces. A 36-degree rotation of one of the halves before the joining yields a pentagonal gyrocupolarotunda.

<span class="mw-page-title-main">Pentagonal gyrocupolarotunda</span> 33rd Johnson solid; pentagonal cupola and rotunda joined base-to-base

In geometry, the pentagonal gyrocupolarotunda is one of the Johnson solids. Like the pentagonal orthocupolarotunda, it can be constructed by joining a pentagonal cupola and a pentagonal rotunda along their decagonal bases. The difference is that in this solid, the two halves are rotated 36 degrees with respect to one another.

<span class="mw-page-title-main">Elongated pentagonal orthocupolarotunda</span> 40th Johnson solid

In geometry, the elongated pentagonal orthocupolarotunda is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal orthocupolarotunda by inserting a decagonal prism between its halves. Rotating either the cupola or the rotunda through 36 degrees before inserting the prism yields an elongated pentagonal gyrocupolarotunda.

<span class="mw-page-title-main">Gyroelongated pentagonal cupolarotunda</span> 47th Johnson solid

In geometry, the gyroelongated pentagonal cupolarotunda is one of the Johnson solids. As the name suggests, it can be constructed by gyroelongating a pentagonal cupolarotunda by inserting a decagonal antiprism between its two halves.

References

  1. 1 2 Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics , 18: 169–200, doi: 10.4153/cjm-1966-021-8 , MR   0185507, S2CID   122006114, Zbl   0132.14603 .
  2. Timofeenko, A. V. (2009), "The non-Platonic and non-Archimedean noncomposite polyhedra", Journal of Mathematical Science, 162 (5): 720, doi:10.1007/s10958-009-9655-0, S2CID   120114341
  3. Berman, Martin (1971), "Regular-faced convex polyhedra", Journal of the Franklin Institute, 291 (5): 329–352, doi:10.1016/0016-0032(71)90071-8, MR   0290245
  4. OEIS Foundation Inc. (2020), The On-Line Encyclopedia of Integer Sequences, A334114.